On the size of special families of linear operators
We continue the study, started in [12], of the search for algebraic structures one can find within the sets of injective linear functions. We shall focus on the cases when the operators are considered both on finite dimensional and infinite dimensional domains. We also study the set of continuous su...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2018-05, Vol.544, p.186-205 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | |
container_start_page | 186 |
container_title | Linear algebra and its applications |
container_volume | 544 |
creator | Aron, R.M. Bernal-González, L. Jiménez-Rodríguez, P. Muñoz-Fernández, G.A. Seoane-Sepúlveda, J.B. |
description | We continue the study, started in [12], of the search for algebraic structures one can find within the sets of injective linear functions. We shall focus on the cases when the operators are considered both on finite dimensional and infinite dimensional domains. We also study the set of continuous surjective linear operators. |
doi_str_mv | 10.1016/j.laa.2018.01.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082037975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518300120</els_id><sourcerecordid>2082037975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-65b1b240ca24506dfbf6aa404315ac86b4dbea2b79233eb7842cbeec2e3117e63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz62TjyZdPMmiq7CwFz2HJJ1iSrepSVfQX2-W9expYHif-XgIuaVQUaDyvq8GYyoGtKmAVgDyjCxoo3hJm1qekwUAEyVXq_qSXKXUA4BQwBaE78Zi_sAi-R8sQlekCZ03Q9GZvR88pmNv8COaWIQJo5lDTNfkojNDwpu_uiTvz09v65dyu9u8rh-3peOymUtZW2qZAGeYqEG2ne2kMQIEp7VxjbSitWiYVSvGOVrVCOYsomPIKVUo-ZLcneZOMXweMM26D4c45pWaQcMgv6PqnKKnlIshpYidnqLfm_itKeijG93r7EYf3WigOrvJzMOJwXz-l8eok_M4Omx9RDfrNvh_6F_S7mrm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082037975</pqid></control><display><type>article</type><title>On the size of special families of linear operators</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aron, R.M. ; Bernal-González, L. ; Jiménez-Rodríguez, P. ; Muñoz-Fernández, G.A. ; Seoane-Sepúlveda, J.B.</creator><creatorcontrib>Aron, R.M. ; Bernal-González, L. ; Jiménez-Rodríguez, P. ; Muñoz-Fernández, G.A. ; Seoane-Sepúlveda, J.B.</creatorcontrib><description>We continue the study, started in [12], of the search for algebraic structures one can find within the sets of injective linear functions. We shall focus on the cases when the operators are considered both on finite dimensional and infinite dimensional domains. We also study the set of continuous surjective linear operators.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.01.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Independent system operators ; Injective linear function ; Lineability ; Linear algebra ; Linear equations ; Linear functions ; Linear operators ; Mathematical functions ; Operators (mathematics) ; Parallelizability ; Spaceability ; Surjective linear function</subject><ispartof>Linear algebra and its applications, 2018-05, Vol.544, p.186-205</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. May 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-65b1b240ca24506dfbf6aa404315ac86b4dbea2b79233eb7842cbeec2e3117e63</citedby><cites>FETCH-LOGICAL-c368t-65b1b240ca24506dfbf6aa404315ac86b4dbea2b79233eb7842cbeec2e3117e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379518300120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Aron, R.M.</creatorcontrib><creatorcontrib>Bernal-González, L.</creatorcontrib><creatorcontrib>Jiménez-Rodríguez, P.</creatorcontrib><creatorcontrib>Muñoz-Fernández, G.A.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, J.B.</creatorcontrib><title>On the size of special families of linear operators</title><title>Linear algebra and its applications</title><description>We continue the study, started in [12], of the search for algebraic structures one can find within the sets of injective linear functions. We shall focus on the cases when the operators are considered both on finite dimensional and infinite dimensional domains. We also study the set of continuous surjective linear operators.</description><subject>Independent system operators</subject><subject>Injective linear function</subject><subject>Lineability</subject><subject>Linear algebra</subject><subject>Linear equations</subject><subject>Linear functions</subject><subject>Linear operators</subject><subject>Mathematical functions</subject><subject>Operators (mathematics)</subject><subject>Parallelizability</subject><subject>Spaceability</subject><subject>Surjective linear function</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz62TjyZdPMmiq7CwFz2HJJ1iSrepSVfQX2-W9expYHif-XgIuaVQUaDyvq8GYyoGtKmAVgDyjCxoo3hJm1qekwUAEyVXq_qSXKXUA4BQwBaE78Zi_sAi-R8sQlekCZ03Q9GZvR88pmNv8COaWIQJo5lDTNfkojNDwpu_uiTvz09v65dyu9u8rh-3peOymUtZW2qZAGeYqEG2ne2kMQIEp7VxjbSitWiYVSvGOVrVCOYsomPIKVUo-ZLcneZOMXweMM26D4c45pWaQcMgv6PqnKKnlIshpYidnqLfm_itKeijG93r7EYf3WigOrvJzMOJwXz-l8eok_M4Omx9RDfrNvh_6F_S7mrm</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Aron, R.M.</creator><creator>Bernal-González, L.</creator><creator>Jiménez-Rodríguez, P.</creator><creator>Muñoz-Fernández, G.A.</creator><creator>Seoane-Sepúlveda, J.B.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180501</creationdate><title>On the size of special families of linear operators</title><author>Aron, R.M. ; Bernal-González, L. ; Jiménez-Rodríguez, P. ; Muñoz-Fernández, G.A. ; Seoane-Sepúlveda, J.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-65b1b240ca24506dfbf6aa404315ac86b4dbea2b79233eb7842cbeec2e3117e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Independent system operators</topic><topic>Injective linear function</topic><topic>Lineability</topic><topic>Linear algebra</topic><topic>Linear equations</topic><topic>Linear functions</topic><topic>Linear operators</topic><topic>Mathematical functions</topic><topic>Operators (mathematics)</topic><topic>Parallelizability</topic><topic>Spaceability</topic><topic>Surjective linear function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aron, R.M.</creatorcontrib><creatorcontrib>Bernal-González, L.</creatorcontrib><creatorcontrib>Jiménez-Rodríguez, P.</creatorcontrib><creatorcontrib>Muñoz-Fernández, G.A.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, J.B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aron, R.M.</au><au>Bernal-González, L.</au><au>Jiménez-Rodríguez, P.</au><au>Muñoz-Fernández, G.A.</au><au>Seoane-Sepúlveda, J.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the size of special families of linear operators</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>544</volume><spage>186</spage><epage>205</epage><pages>186-205</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>We continue the study, started in [12], of the search for algebraic structures one can find within the sets of injective linear functions. We shall focus on the cases when the operators are considered both on finite dimensional and infinite dimensional domains. We also study the set of continuous surjective linear operators.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.01.006</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2018-05, Vol.544, p.186-205 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2082037975 |
source | ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Independent system operators Injective linear function Lineability Linear algebra Linear equations Linear functions Linear operators Mathematical functions Operators (mathematics) Parallelizability Spaceability Surjective linear function |
title | On the size of special families of linear operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20size%20of%20special%20families%20of%20linear%20operators&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Aron,%20R.M.&rft.date=2018-05-01&rft.volume=544&rft.spage=186&rft.epage=205&rft.pages=186-205&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.01.006&rft_dat=%3Cproquest_cross%3E2082037975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082037975&rft_id=info:pmid/&rft_els_id=S0024379518300120&rfr_iscdi=true |