Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications

Cauchy–Vandermonde matrices play a fundamental role in rational interpolation theory and in other fields. When all their corresponding nodes are different and positive and all poles are different and negative and follow adequate orderings, these matrices are totally positive. In this paper we provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2017-03, Vol.517, p.63-84
Hauptverfasser: Marco, Ana, Martínez, José-Javier, Peña, Juan Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue
container_start_page 63
container_title Linear algebra and its applications
container_volume 517
creator Marco, Ana
Martínez, José-Javier
Peña, Juan Manuel
description Cauchy–Vandermonde matrices play a fundamental role in rational interpolation theory and in other fields. When all their corresponding nodes are different and positive and all poles are different and negative and follow adequate orderings, these matrices are totally positive. In this paper we provide fast algorithms for computing bidiagonal factorizations of these matrices and their inverses with high relative accuracy. These algorithms can be used to solve with high relative accuracy other algebraic problems, such as the computation of all singular values, all eigenvalues or the solution of certain linear systems. The error analysis of the algorithm for computing the bidiagonal factorization and the corresponding perturbation theory are also performed.
doi_str_mv 10.1016/j.laa.2016.12.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082037895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379516305821</els_id><sourcerecordid>2082037895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-68bf0ae6b008de1fa9623b88489ad39e4319728ad8853d4c525f0e998aeb04e03</originalsourceid><addsrcrecordid>eNp9kE1qIzEQhUWYQDyeHCA7QdbdKUn9oyarYPIHgWxmZiuqpeqJTNvqSO2Ad7nD3DAniYyzzqaqeLxXVH2MXQgoBYjmal2OiKXMYylkCaBO2ELoVhVC180PtgCQVaHarj5jP1NaA0DVglwwd2PtLuJMvPfO47-wxZE7smEzheRnH7Y8DHwOM47jnh-1N-Ir3NmX_cf7_7-4dRQ3IVe-wTl6S4lnjeM0jd7iYUP6xU4HHBOdf_Ul-3N3-3v1UDw93z-ubp4Kq2Q9F43uB0BqegDtSAzYNVL1Wle6Q6c6qpToWqnRaV0rV9la1gNQ12mkHioCtWSXx71TDK87SrNZh13MHyUjQUtQre7q7BJHl40hpUiDmaLfYNwbAeYA06xNhmkOMI2QJsPMmetjhvL5b56iSdbT1pLzkexsXPDfpD8BfjN_Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082037895</pqid></control><display><type>article</type><title>Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Marco, Ana ; Martínez, José-Javier ; Peña, Juan Manuel</creator><creatorcontrib>Marco, Ana ; Martínez, José-Javier ; Peña, Juan Manuel</creatorcontrib><description>Cauchy–Vandermonde matrices play a fundamental role in rational interpolation theory and in other fields. When all their corresponding nodes are different and positive and all poles are different and negative and follow adequate orderings, these matrices are totally positive. In this paper we provide fast algorithms for computing bidiagonal factorizations of these matrices and their inverses with high relative accuracy. These algorithms can be used to solve with high relative accuracy other algebraic problems, such as the computation of all singular values, all eigenvalues or the solution of certain linear systems. The error analysis of the algorithm for computing the bidiagonal factorization and the corresponding perturbation theory are also performed.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.12.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algorithms ; Bidiagonal decomposition ; Cauchy problems ; Cauchy–Vandermonde matrix ; Computation ; Decomposition ; Eigenvalues ; Error analysis ; High relative accuracy ; Interpolation ; Linear algebra ; Linear systems ; Matrix ; Neville elimination ; Perturbation theory ; Totally positive matrix</subject><ispartof>Linear algebra and its applications, 2017-03, Vol.517, p.63-84</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Mar 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-68bf0ae6b008de1fa9623b88489ad39e4319728ad8853d4c525f0e998aeb04e03</citedby><cites>FETCH-LOGICAL-c325t-68bf0ae6b008de1fa9623b88489ad39e4319728ad8853d4c525f0e998aeb04e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379516305821$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Marco, Ana</creatorcontrib><creatorcontrib>Martínez, José-Javier</creatorcontrib><creatorcontrib>Peña, Juan Manuel</creatorcontrib><title>Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications</title><title>Linear algebra and its applications</title><description>Cauchy–Vandermonde matrices play a fundamental role in rational interpolation theory and in other fields. When all their corresponding nodes are different and positive and all poles are different and negative and follow adequate orderings, these matrices are totally positive. In this paper we provide fast algorithms for computing bidiagonal factorizations of these matrices and their inverses with high relative accuracy. These algorithms can be used to solve with high relative accuracy other algebraic problems, such as the computation of all singular values, all eigenvalues or the solution of certain linear systems. The error analysis of the algorithm for computing the bidiagonal factorization and the corresponding perturbation theory are also performed.</description><subject>Algorithms</subject><subject>Bidiagonal decomposition</subject><subject>Cauchy problems</subject><subject>Cauchy–Vandermonde matrix</subject><subject>Computation</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Error analysis</subject><subject>High relative accuracy</subject><subject>Interpolation</subject><subject>Linear algebra</subject><subject>Linear systems</subject><subject>Matrix</subject><subject>Neville elimination</subject><subject>Perturbation theory</subject><subject>Totally positive matrix</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1qIzEQhUWYQDyeHCA7QdbdKUn9oyarYPIHgWxmZiuqpeqJTNvqSO2Ad7nD3DAniYyzzqaqeLxXVH2MXQgoBYjmal2OiKXMYylkCaBO2ELoVhVC180PtgCQVaHarj5jP1NaA0DVglwwd2PtLuJMvPfO47-wxZE7smEzheRnH7Y8DHwOM47jnh-1N-Ir3NmX_cf7_7-4dRQ3IVe-wTl6S4lnjeM0jd7iYUP6xU4HHBOdf_Ul-3N3-3v1UDw93z-ubp4Kq2Q9F43uB0BqegDtSAzYNVL1Wle6Q6c6qpToWqnRaV0rV9la1gNQ12mkHioCtWSXx71TDK87SrNZh13MHyUjQUtQre7q7BJHl40hpUiDmaLfYNwbAeYA06xNhmkOMI2QJsPMmetjhvL5b56iSdbT1pLzkexsXPDfpD8BfjN_Dw</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Marco, Ana</creator><creator>Martínez, José-Javier</creator><creator>Peña, Juan Manuel</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170315</creationdate><title>Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications</title><author>Marco, Ana ; Martínez, José-Javier ; Peña, Juan Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-68bf0ae6b008de1fa9623b88489ad39e4319728ad8853d4c525f0e998aeb04e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bidiagonal decomposition</topic><topic>Cauchy problems</topic><topic>Cauchy–Vandermonde matrix</topic><topic>Computation</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Error analysis</topic><topic>High relative accuracy</topic><topic>Interpolation</topic><topic>Linear algebra</topic><topic>Linear systems</topic><topic>Matrix</topic><topic>Neville elimination</topic><topic>Perturbation theory</topic><topic>Totally positive matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marco, Ana</creatorcontrib><creatorcontrib>Martínez, José-Javier</creatorcontrib><creatorcontrib>Peña, Juan Manuel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marco, Ana</au><au>Martínez, José-Javier</au><au>Peña, Juan Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>517</volume><spage>63</spage><epage>84</epage><pages>63-84</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Cauchy–Vandermonde matrices play a fundamental role in rational interpolation theory and in other fields. When all their corresponding nodes are different and positive and all poles are different and negative and follow adequate orderings, these matrices are totally positive. In this paper we provide fast algorithms for computing bidiagonal factorizations of these matrices and their inverses with high relative accuracy. These algorithms can be used to solve with high relative accuracy other algebraic problems, such as the computation of all singular values, all eigenvalues or the solution of certain linear systems. The error analysis of the algorithm for computing the bidiagonal factorization and the corresponding perturbation theory are also performed.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.12.003</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2017-03, Vol.517, p.63-84
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2082037895
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Bidiagonal decomposition
Cauchy problems
Cauchy–Vandermonde matrix
Computation
Decomposition
Eigenvalues
Error analysis
High relative accuracy
Interpolation
Linear algebra
Linear systems
Matrix
Neville elimination
Perturbation theory
Totally positive matrix
title Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T12%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20bidiagonal%20decomposition%20of%20totally%20positive%20Cauchy%E2%80%93Vandermonde%20matrices%20and%20applications&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Marco,%20Ana&rft.date=2017-03-15&rft.volume=517&rft.spage=63&rft.epage=84&rft.pages=63-84&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.12.003&rft_dat=%3Cproquest_cross%3E2082037895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082037895&rft_id=info:pmid/&rft_els_id=S0024379516305821&rfr_iscdi=true