Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications
Cauchy–Vandermonde matrices play a fundamental role in rational interpolation theory and in other fields. When all their corresponding nodes are different and positive and all poles are different and negative and follow adequate orderings, these matrices are totally positive. In this paper we provid...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-03, Vol.517, p.63-84 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | |
container_start_page | 63 |
container_title | Linear algebra and its applications |
container_volume | 517 |
creator | Marco, Ana Martínez, José-Javier Peña, Juan Manuel |
description | Cauchy–Vandermonde matrices play a fundamental role in rational interpolation theory and in other fields. When all their corresponding nodes are different and positive and all poles are different and negative and follow adequate orderings, these matrices are totally positive. In this paper we provide fast algorithms for computing bidiagonal factorizations of these matrices and their inverses with high relative accuracy. These algorithms can be used to solve with high relative accuracy other algebraic problems, such as the computation of all singular values, all eigenvalues or the solution of certain linear systems. The error analysis of the algorithm for computing the bidiagonal factorization and the corresponding perturbation theory are also performed. |
doi_str_mv | 10.1016/j.laa.2016.12.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082037895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379516305821</els_id><sourcerecordid>2082037895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-68bf0ae6b008de1fa9623b88489ad39e4319728ad8853d4c525f0e998aeb04e03</originalsourceid><addsrcrecordid>eNp9kE1qIzEQhUWYQDyeHCA7QdbdKUn9oyarYPIHgWxmZiuqpeqJTNvqSO2Ad7nD3DAniYyzzqaqeLxXVH2MXQgoBYjmal2OiKXMYylkCaBO2ELoVhVC180PtgCQVaHarj5jP1NaA0DVglwwd2PtLuJMvPfO47-wxZE7smEzheRnH7Y8DHwOM47jnh-1N-Ir3NmX_cf7_7-4dRQ3IVe-wTl6S4lnjeM0jd7iYUP6xU4HHBOdf_Ul-3N3-3v1UDw93z-ubp4Kq2Q9F43uB0BqegDtSAzYNVL1Wle6Q6c6qpToWqnRaV0rV9la1gNQ12mkHioCtWSXx71TDK87SrNZh13MHyUjQUtQre7q7BJHl40hpUiDmaLfYNwbAeYA06xNhmkOMI2QJsPMmetjhvL5b56iSdbT1pLzkexsXPDfpD8BfjN_Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082037895</pqid></control><display><type>article</type><title>Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Marco, Ana ; Martínez, José-Javier ; Peña, Juan Manuel</creator><creatorcontrib>Marco, Ana ; Martínez, José-Javier ; Peña, Juan Manuel</creatorcontrib><description>Cauchy–Vandermonde matrices play a fundamental role in rational interpolation theory and in other fields. When all their corresponding nodes are different and positive and all poles are different and negative and follow adequate orderings, these matrices are totally positive. In this paper we provide fast algorithms for computing bidiagonal factorizations of these matrices and their inverses with high relative accuracy. These algorithms can be used to solve with high relative accuracy other algebraic problems, such as the computation of all singular values, all eigenvalues or the solution of certain linear systems. The error analysis of the algorithm for computing the bidiagonal factorization and the corresponding perturbation theory are also performed.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.12.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algorithms ; Bidiagonal decomposition ; Cauchy problems ; Cauchy–Vandermonde matrix ; Computation ; Decomposition ; Eigenvalues ; Error analysis ; High relative accuracy ; Interpolation ; Linear algebra ; Linear systems ; Matrix ; Neville elimination ; Perturbation theory ; Totally positive matrix</subject><ispartof>Linear algebra and its applications, 2017-03, Vol.517, p.63-84</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Mar 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-68bf0ae6b008de1fa9623b88489ad39e4319728ad8853d4c525f0e998aeb04e03</citedby><cites>FETCH-LOGICAL-c325t-68bf0ae6b008de1fa9623b88489ad39e4319728ad8853d4c525f0e998aeb04e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379516305821$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Marco, Ana</creatorcontrib><creatorcontrib>Martínez, José-Javier</creatorcontrib><creatorcontrib>Peña, Juan Manuel</creatorcontrib><title>Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications</title><title>Linear algebra and its applications</title><description>Cauchy–Vandermonde matrices play a fundamental role in rational interpolation theory and in other fields. When all their corresponding nodes are different and positive and all poles are different and negative and follow adequate orderings, these matrices are totally positive. In this paper we provide fast algorithms for computing bidiagonal factorizations of these matrices and their inverses with high relative accuracy. These algorithms can be used to solve with high relative accuracy other algebraic problems, such as the computation of all singular values, all eigenvalues or the solution of certain linear systems. The error analysis of the algorithm for computing the bidiagonal factorization and the corresponding perturbation theory are also performed.</description><subject>Algorithms</subject><subject>Bidiagonal decomposition</subject><subject>Cauchy problems</subject><subject>Cauchy–Vandermonde matrix</subject><subject>Computation</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Error analysis</subject><subject>High relative accuracy</subject><subject>Interpolation</subject><subject>Linear algebra</subject><subject>Linear systems</subject><subject>Matrix</subject><subject>Neville elimination</subject><subject>Perturbation theory</subject><subject>Totally positive matrix</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1qIzEQhUWYQDyeHCA7QdbdKUn9oyarYPIHgWxmZiuqpeqJTNvqSO2Ad7nD3DAniYyzzqaqeLxXVH2MXQgoBYjmal2OiKXMYylkCaBO2ELoVhVC180PtgCQVaHarj5jP1NaA0DVglwwd2PtLuJMvPfO47-wxZE7smEzheRnH7Y8DHwOM47jnh-1N-Ir3NmX_cf7_7-4dRQ3IVe-wTl6S4lnjeM0jd7iYUP6xU4HHBOdf_Ul-3N3-3v1UDw93z-ubp4Kq2Q9F43uB0BqegDtSAzYNVL1Wle6Q6c6qpToWqnRaV0rV9la1gNQ12mkHioCtWSXx71TDK87SrNZh13MHyUjQUtQre7q7BJHl40hpUiDmaLfYNwbAeYA06xNhmkOMI2QJsPMmetjhvL5b56iSdbT1pLzkexsXPDfpD8BfjN_Dw</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Marco, Ana</creator><creator>Martínez, José-Javier</creator><creator>Peña, Juan Manuel</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170315</creationdate><title>Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications</title><author>Marco, Ana ; Martínez, José-Javier ; Peña, Juan Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-68bf0ae6b008de1fa9623b88489ad39e4319728ad8853d4c525f0e998aeb04e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bidiagonal decomposition</topic><topic>Cauchy problems</topic><topic>Cauchy–Vandermonde matrix</topic><topic>Computation</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Error analysis</topic><topic>High relative accuracy</topic><topic>Interpolation</topic><topic>Linear algebra</topic><topic>Linear systems</topic><topic>Matrix</topic><topic>Neville elimination</topic><topic>Perturbation theory</topic><topic>Totally positive matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marco, Ana</creatorcontrib><creatorcontrib>Martínez, José-Javier</creatorcontrib><creatorcontrib>Peña, Juan Manuel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marco, Ana</au><au>Martínez, José-Javier</au><au>Peña, Juan Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>517</volume><spage>63</spage><epage>84</epage><pages>63-84</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Cauchy–Vandermonde matrices play a fundamental role in rational interpolation theory and in other fields. When all their corresponding nodes are different and positive and all poles are different and negative and follow adequate orderings, these matrices are totally positive. In this paper we provide fast algorithms for computing bidiagonal factorizations of these matrices and their inverses with high relative accuracy. These algorithms can be used to solve with high relative accuracy other algebraic problems, such as the computation of all singular values, all eigenvalues or the solution of certain linear systems. The error analysis of the algorithm for computing the bidiagonal factorization and the corresponding perturbation theory are also performed.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.12.003</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2017-03, Vol.517, p.63-84 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2082037895 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Bidiagonal decomposition Cauchy problems Cauchy–Vandermonde matrix Computation Decomposition Eigenvalues Error analysis High relative accuracy Interpolation Linear algebra Linear systems Matrix Neville elimination Perturbation theory Totally positive matrix |
title | Accurate bidiagonal decomposition of totally positive Cauchy–Vandermonde matrices and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T12%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20bidiagonal%20decomposition%20of%20totally%20positive%20Cauchy%E2%80%93Vandermonde%20matrices%20and%20applications&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Marco,%20Ana&rft.date=2017-03-15&rft.volume=517&rft.spage=63&rft.epage=84&rft.pages=63-84&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.12.003&rft_dat=%3Cproquest_cross%3E2082037895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082037895&rft_id=info:pmid/&rft_els_id=S0024379516305821&rfr_iscdi=true |