An Improved Cellular Nonlinear Network Architecture for Binary and Grayscale Image Processing
Cellular nonlinear networks (CNNs) constitute a very powerful paradigm for single instruction/multiple data computers with fine granularity. Analog and mixed-signal implementations have proven to be suitable for applications in high-speed image processing, robot control, medical signal processing, a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2018-08, Vol.65 (8), p.1084-1088 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cellular nonlinear networks (CNNs) constitute a very powerful paradigm for single instruction/multiple data computers with fine granularity. Analog and mixed-signal implementations have proven to be suitable for applications in high-speed image processing, robot control, medical signal processing, and many more. Especially digital emulations on field-programmable gate arrays (FPGAs) allow the development of general-purpose computers based on the CNN universal machine with an inherently parallel structure, a high degree of flexibility and a superior computational precision. However, these emulations turn out to be inefficient for the execution of binary operations, which account for more than two-thirds of all processing steps in a typical CNN algorithm. In this contribution, we present an architecture for the emulation of CNNs that supports both a fast and efficient processing of binary images, and a high computational accuracy when needed. With the FPGA implementation of this architecture, a speed-up factor of up to 5 is achieved for binary-data operations. |
---|---|
ISSN: | 1549-7747 1558-3791 |
DOI: | 10.1109/TCSII.2016.2621773 |