An Automated Images-to-Graphs Framework for High Resolution Connectomics

Reconstructing a map of neuronal connectivity is a critical challenge in contemporary neuroscience. Recent advances in high-throughput serial section electron microscopy (EM) have produced massive 3D image volumes of nanoscale brain tissue for the first time. The resolution of EM allows for individu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-04
Hauptverfasser: William Gray Roncal, Kleissas, Dean M, Vogelstein, Joshua T, Manavalan, Priya, Lillaney, Kunal, Pekala, Michael, Burns, Randal, R Jacob Vogelstein, Priebe, Carey E, Chevillet, Mark A, Hager, Gregory D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator William Gray Roncal
Kleissas, Dean M
Vogelstein, Joshua T
Manavalan, Priya
Lillaney, Kunal
Pekala, Michael
Burns, Randal
R Jacob Vogelstein
Priebe, Carey E
Chevillet, Mark A
Hager, Gregory D
description Reconstructing a map of neuronal connectivity is a critical challenge in contemporary neuroscience. Recent advances in high-throughput serial section electron microscopy (EM) have produced massive 3D image volumes of nanoscale brain tissue for the first time. The resolution of EM allows for individual neurons and their synaptic connections to be directly observed. Recovering neuronal networks by manually tracing each neuronal process at this scale is unmanageable, and therefore researchers are developing automated image processing modules. Thus far, state-of-the-art algorithms focus only on the solution to a particular task (e.g., neuron segmentation or synapse identification). In this manuscript we present the first fully automated images-to-graphs pipeline (i.e., a pipeline that begins with an imaged volume of neural tissue and produces a brain graph without any human interaction). To evaluate overall performance and select the best parameters and methods, we also develop a metric to assess the quality of the output graphs. We evaluate a set of algorithms and parameters, searching possible operating points to identify the best available brain graph for our assessment metric. Finally, we deploy a reference end-to-end version of the pipeline on a large, publicly available data set. This provides a baseline result and framework for community analysis and future algorithm development and testing. All code and data derivatives have been made publicly available toward eventually unlocking new biofidelic computational primitives and understanding of neuropathologies.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081881198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081881198</sourcerecordid><originalsourceid>FETCH-proquest_journals_20818811983</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3CLgO5GM1Lkux1q24L6GmP9u8mpfi9e3CA7iaxcysSCSVEkwfpNyQGLHnnMvjSSaJikiROprOAUYT7JPeRtNYZAHY1ZupRZp7M9oP-BetwdOia1p6twjDHDpwNAPnbLXMXYU7sq7NgDb-cUv2-eWRFWzy8J4thrKH2btFlZJrobUQZ63-q74YFDvi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081881198</pqid></control><display><type>article</type><title>An Automated Images-to-Graphs Framework for High Resolution Connectomics</title><source>Free E- Journals</source><creator>William Gray Roncal ; Kleissas, Dean M ; Vogelstein, Joshua T ; Manavalan, Priya ; Lillaney, Kunal ; Pekala, Michael ; Burns, Randal ; R Jacob Vogelstein ; Priebe, Carey E ; Chevillet, Mark A ; Hager, Gregory D</creator><creatorcontrib>William Gray Roncal ; Kleissas, Dean M ; Vogelstein, Joshua T ; Manavalan, Priya ; Lillaney, Kunal ; Pekala, Michael ; Burns, Randal ; R Jacob Vogelstein ; Priebe, Carey E ; Chevillet, Mark A ; Hager, Gregory D</creatorcontrib><description>Reconstructing a map of neuronal connectivity is a critical challenge in contemporary neuroscience. Recent advances in high-throughput serial section electron microscopy (EM) have produced massive 3D image volumes of nanoscale brain tissue for the first time. The resolution of EM allows for individual neurons and their synaptic connections to be directly observed. Recovering neuronal networks by manually tracing each neuronal process at this scale is unmanageable, and therefore researchers are developing automated image processing modules. Thus far, state-of-the-art algorithms focus only on the solution to a particular task (e.g., neuron segmentation or synapse identification). In this manuscript we present the first fully automated images-to-graphs pipeline (i.e., a pipeline that begins with an imaged volume of neural tissue and produces a brain graph without any human interaction). To evaluate overall performance and select the best parameters and methods, we also develop a metric to assess the quality of the output graphs. We evaluate a set of algorithms and parameters, searching possible operating points to identify the best available brain graph for our assessment metric. Finally, we deploy a reference end-to-end version of the pipeline on a large, publicly available data set. This provides a baseline result and framework for community analysis and future algorithm development and testing. All code and data derivatives have been made publicly available toward eventually unlocking new biofidelic computational primitives and understanding of neuropathologies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Automation ; Brain ; Graphs ; Image processing ; Image reconstruction ; Image resolution ; Image segmentation ; Neural networks ; Parameter identification ; Pipelines ; Quality assessment ; Search algorithms</subject><ispartof>arXiv.org, 2015-04</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>William Gray Roncal</creatorcontrib><creatorcontrib>Kleissas, Dean M</creatorcontrib><creatorcontrib>Vogelstein, Joshua T</creatorcontrib><creatorcontrib>Manavalan, Priya</creatorcontrib><creatorcontrib>Lillaney, Kunal</creatorcontrib><creatorcontrib>Pekala, Michael</creatorcontrib><creatorcontrib>Burns, Randal</creatorcontrib><creatorcontrib>R Jacob Vogelstein</creatorcontrib><creatorcontrib>Priebe, Carey E</creatorcontrib><creatorcontrib>Chevillet, Mark A</creatorcontrib><creatorcontrib>Hager, Gregory D</creatorcontrib><title>An Automated Images-to-Graphs Framework for High Resolution Connectomics</title><title>arXiv.org</title><description>Reconstructing a map of neuronal connectivity is a critical challenge in contemporary neuroscience. Recent advances in high-throughput serial section electron microscopy (EM) have produced massive 3D image volumes of nanoscale brain tissue for the first time. The resolution of EM allows for individual neurons and their synaptic connections to be directly observed. Recovering neuronal networks by manually tracing each neuronal process at this scale is unmanageable, and therefore researchers are developing automated image processing modules. Thus far, state-of-the-art algorithms focus only on the solution to a particular task (e.g., neuron segmentation or synapse identification). In this manuscript we present the first fully automated images-to-graphs pipeline (i.e., a pipeline that begins with an imaged volume of neural tissue and produces a brain graph without any human interaction). To evaluate overall performance and select the best parameters and methods, we also develop a metric to assess the quality of the output graphs. We evaluate a set of algorithms and parameters, searching possible operating points to identify the best available brain graph for our assessment metric. Finally, we deploy a reference end-to-end version of the pipeline on a large, publicly available data set. This provides a baseline result and framework for community analysis and future algorithm development and testing. All code and data derivatives have been made publicly available toward eventually unlocking new biofidelic computational primitives and understanding of neuropathologies.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Brain</subject><subject>Graphs</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Pipelines</subject><subject>Quality assessment</subject><subject>Search algorithms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3CLgO5GM1Lkux1q24L6GmP9u8mpfi9e3CA7iaxcysSCSVEkwfpNyQGLHnnMvjSSaJikiROprOAUYT7JPeRtNYZAHY1ZupRZp7M9oP-BetwdOia1p6twjDHDpwNAPnbLXMXYU7sq7NgDb-cUv2-eWRFWzy8J4thrKH2btFlZJrobUQZ63-q74YFDvi</recordid><startdate>20150430</startdate><enddate>20150430</enddate><creator>William Gray Roncal</creator><creator>Kleissas, Dean M</creator><creator>Vogelstein, Joshua T</creator><creator>Manavalan, Priya</creator><creator>Lillaney, Kunal</creator><creator>Pekala, Michael</creator><creator>Burns, Randal</creator><creator>R Jacob Vogelstein</creator><creator>Priebe, Carey E</creator><creator>Chevillet, Mark A</creator><creator>Hager, Gregory D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150430</creationdate><title>An Automated Images-to-Graphs Framework for High Resolution Connectomics</title><author>William Gray Roncal ; Kleissas, Dean M ; Vogelstein, Joshua T ; Manavalan, Priya ; Lillaney, Kunal ; Pekala, Michael ; Burns, Randal ; R Jacob Vogelstein ; Priebe, Carey E ; Chevillet, Mark A ; Hager, Gregory D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20818811983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Brain</topic><topic>Graphs</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Pipelines</topic><topic>Quality assessment</topic><topic>Search algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>William Gray Roncal</creatorcontrib><creatorcontrib>Kleissas, Dean M</creatorcontrib><creatorcontrib>Vogelstein, Joshua T</creatorcontrib><creatorcontrib>Manavalan, Priya</creatorcontrib><creatorcontrib>Lillaney, Kunal</creatorcontrib><creatorcontrib>Pekala, Michael</creatorcontrib><creatorcontrib>Burns, Randal</creatorcontrib><creatorcontrib>R Jacob Vogelstein</creatorcontrib><creatorcontrib>Priebe, Carey E</creatorcontrib><creatorcontrib>Chevillet, Mark A</creatorcontrib><creatorcontrib>Hager, Gregory D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>William Gray Roncal</au><au>Kleissas, Dean M</au><au>Vogelstein, Joshua T</au><au>Manavalan, Priya</au><au>Lillaney, Kunal</au><au>Pekala, Michael</au><au>Burns, Randal</au><au>R Jacob Vogelstein</au><au>Priebe, Carey E</au><au>Chevillet, Mark A</au><au>Hager, Gregory D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Automated Images-to-Graphs Framework for High Resolution Connectomics</atitle><jtitle>arXiv.org</jtitle><date>2015-04-30</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Reconstructing a map of neuronal connectivity is a critical challenge in contemporary neuroscience. Recent advances in high-throughput serial section electron microscopy (EM) have produced massive 3D image volumes of nanoscale brain tissue for the first time. The resolution of EM allows for individual neurons and their synaptic connections to be directly observed. Recovering neuronal networks by manually tracing each neuronal process at this scale is unmanageable, and therefore researchers are developing automated image processing modules. Thus far, state-of-the-art algorithms focus only on the solution to a particular task (e.g., neuron segmentation or synapse identification). In this manuscript we present the first fully automated images-to-graphs pipeline (i.e., a pipeline that begins with an imaged volume of neural tissue and produces a brain graph without any human interaction). To evaluate overall performance and select the best parameters and methods, we also develop a metric to assess the quality of the output graphs. We evaluate a set of algorithms and parameters, searching possible operating points to identify the best available brain graph for our assessment metric. Finally, we deploy a reference end-to-end version of the pipeline on a large, publicly available data set. This provides a baseline result and framework for community analysis and future algorithm development and testing. All code and data derivatives have been made publicly available toward eventually unlocking new biofidelic computational primitives and understanding of neuropathologies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081881198
source Free E- Journals
subjects Algorithms
Automation
Brain
Graphs
Image processing
Image reconstruction
Image resolution
Image segmentation
Neural networks
Parameter identification
Pipelines
Quality assessment
Search algorithms
title An Automated Images-to-Graphs Framework for High Resolution Connectomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Automated%20Images-to-Graphs%20Framework%20for%20High%20Resolution%20Connectomics&rft.jtitle=arXiv.org&rft.au=William%20Gray%20Roncal&rft.date=2015-04-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081881198%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081881198&rft_id=info:pmid/&rfr_iscdi=true