The Drinfel'd Double versus the Heisenberg Double for Hom-Hopf Algebras

Let \((A,\alpha)\) be a finite-dimensional Hom-Hopf algebra. In this paper we mainly construct the Drinfel'd double \(D(A)=(A^{op}\bowtie A^{\ast},\alpha\otimes(\alpha^{-1})^{\ast})\) in the setting of Hom-Hopf algebras by two ways, one of which generalizes Majid's bicrossproduct for Hopf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-03
Hauptverfasser: Lu, Daowei, Wang, Shuanhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \((A,\alpha)\) be a finite-dimensional Hom-Hopf algebra. In this paper we mainly construct the Drinfel'd double \(D(A)=(A^{op}\bowtie A^{\ast},\alpha\otimes(\alpha^{-1})^{\ast})\) in the setting of Hom-Hopf algebras by two ways, one of which generalizes Majid's bicrossproduct for Hopf algebras (see \cite{M2}) and another one is to introduce the notion of dual pairs of of Hom-Hopf algebras. Then we study the relation between the Drinfel'd double \(D(A)\) and Heisenberg double \(H(A)=A\# A^{*}\), generalizing the main result in \cite{Lu}. Especially, the examples given in the paper are not obtained from the usual Hopf algebras.
ISSN:2331-8422