Water diffusion in Mount Changbai peralkaline rhyolitic melt

Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2009-10, Vol.158 (4), p.471-484
Hauptverfasser: Wang, Haoyue, Xu, Zhengjiu, Behrens, Harald, Zhang, Youxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 484
container_issue 4
container_start_page 471
container_title Contributions to mineralogy and petrology
container_volume 158
creator Wang, Haoyue
Xu, Zhengjiu
Behrens, Harald
Zhang, Youxue
description Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as: where D is in m 2  s −1 , T is the temperature in K, P is the pressure in GPa, and X is the mole fraction of water and calculated as X  = ( C /18.015)/( C /18.015 + (100 −  C )/33.14), where C is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000- ad eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H 2 O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.
doi_str_mv 10.1007/s00410-009-0392-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_208182552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008973811</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-8dbbfdaa3a70852d02a9d20b46708e8c69e089b7d9b0e2cd50a0a0ba2704344a3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG_Be3SappsEvMjiP1jxongMkybdzdpt16Q9-O3NUsGTzGF4zHtv4EfIZQHXBYC8SQCiAAagGZSaM3lEZoUoOQO9kMdkBpCvUmt9Ss5S2kLWSlczcvuBg4_UhaYZU-g7Gjr60o_dQJcb7NYWA937iO0ntqHzNG6--zYMoaY73w7n5KTBNvmL3z0n7w_3b8sntnp9fF7erRgKUANTztrGIZYoQVXcAUftOFixyNqreqE9KG2l0xY8r10FmMcilyBKIbCck6updx_7r9GnwWz7MXb5peGgCsWrimdTMZnq2KcUfWP2MewwfpsCzIGRmRiZzMgcGBmZM3zKpOzt1j7-Ff8f-gGVamjn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208182552</pqid></control><display><type>article</type><title>Water diffusion in Mount Changbai peralkaline rhyolitic melt</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Haoyue ; Xu, Zhengjiu ; Behrens, Harald ; Zhang, Youxue</creator><creatorcontrib>Wang, Haoyue ; Xu, Zhengjiu ; Behrens, Harald ; Zhang, Youxue</creatorcontrib><description>Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as: where D is in m 2  s −1 , T is the temperature in K, P is the pressure in GPa, and X is the mole fraction of water and calculated as X  = ( C /18.015)/( C /18.015 + (100 −  C )/33.14), where C is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000- ad eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H 2 O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-009-0392-7</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Earth and Environmental Science ; Earth Sciences ; Geology ; Mineral Resources ; Mineralogy ; Original Paper ; Petrology ; Volcanic eruptions ; Water content</subject><ispartof>Contributions to mineralogy and petrology, 2009-10, Vol.158 (4), p.471-484</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-8dbbfdaa3a70852d02a9d20b46708e8c69e089b7d9b0e2cd50a0a0ba2704344a3</citedby><cites>FETCH-LOGICAL-a408t-8dbbfdaa3a70852d02a9d20b46708e8c69e089b7d9b0e2cd50a0a0ba2704344a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-009-0392-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-009-0392-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Wang, Haoyue</creatorcontrib><creatorcontrib>Xu, Zhengjiu</creatorcontrib><creatorcontrib>Behrens, Harald</creatorcontrib><creatorcontrib>Zhang, Youxue</creatorcontrib><title>Water diffusion in Mount Changbai peralkaline rhyolitic melt</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as: where D is in m 2  s −1 , T is the temperature in K, P is the pressure in GPa, and X is the mole fraction of water and calculated as X  = ( C /18.015)/( C /18.015 + (100 −  C )/33.14), where C is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000- ad eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H 2 O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.</description><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Volcanic eruptions</subject><subject>Water content</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG_Be3SappsEvMjiP1jxongMkybdzdpt16Q9-O3NUsGTzGF4zHtv4EfIZQHXBYC8SQCiAAagGZSaM3lEZoUoOQO9kMdkBpCvUmt9Ss5S2kLWSlczcvuBg4_UhaYZU-g7Gjr60o_dQJcb7NYWA937iO0ntqHzNG6--zYMoaY73w7n5KTBNvmL3z0n7w_3b8sntnp9fF7erRgKUANTztrGIZYoQVXcAUftOFixyNqreqE9KG2l0xY8r10FmMcilyBKIbCck6updx_7r9GnwWz7MXb5peGgCsWrimdTMZnq2KcUfWP2MewwfpsCzIGRmRiZzMgcGBmZM3zKpOzt1j7-Ff8f-gGVamjn</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Wang, Haoyue</creator><creator>Xu, Zhengjiu</creator><creator>Behrens, Harald</creator><creator>Zhang, Youxue</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>20091001</creationdate><title>Water diffusion in Mount Changbai peralkaline rhyolitic melt</title><author>Wang, Haoyue ; Xu, Zhengjiu ; Behrens, Harald ; Zhang, Youxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-8dbbfdaa3a70852d02a9d20b46708e8c69e089b7d9b0e2cd50a0a0ba2704344a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Volcanic eruptions</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haoyue</creatorcontrib><creatorcontrib>Xu, Zhengjiu</creatorcontrib><creatorcontrib>Behrens, Harald</creatorcontrib><creatorcontrib>Zhang, Youxue</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haoyue</au><au>Xu, Zhengjiu</au><au>Behrens, Harald</au><au>Zhang, Youxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water diffusion in Mount Changbai peralkaline rhyolitic melt</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>158</volume><issue>4</issue><spage>471</spage><epage>484</epage><pages>471-484</pages><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as: where D is in m 2  s −1 , T is the temperature in K, P is the pressure in GPa, and X is the mole fraction of water and calculated as X  = ( C /18.015)/( C /18.015 + (100 −  C )/33.14), where C is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000- ad eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H 2 O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00410-009-0392-7</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2009-10, Vol.158 (4), p.471-484
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_208182552
source Springer Nature - Complete Springer Journals
subjects Earth and Environmental Science
Earth Sciences
Geology
Mineral Resources
Mineralogy
Original Paper
Petrology
Volcanic eruptions
Water content
title Water diffusion in Mount Changbai peralkaline rhyolitic melt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20diffusion%20in%20Mount%20Changbai%20peralkaline%20rhyolitic%20melt&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Wang,%20Haoyue&rft.date=2009-10-01&rft.volume=158&rft.issue=4&rft.spage=471&rft.epage=484&rft.pages=471-484&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-009-0392-7&rft_dat=%3Cproquest_cross%3E2008973811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208182552&rft_id=info:pmid/&rfr_iscdi=true