Water diffusion in Mount Changbai peralkaline rhyolitic melt
Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2009-10, Vol.158 (4), p.471-484 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 484 |
---|---|
container_issue | 4 |
container_start_page | 471 |
container_title | Contributions to mineralogy and petrology |
container_volume | 158 |
creator | Wang, Haoyue Xu, Zhengjiu Behrens, Harald Zhang, Youxue |
description | Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as:
where
D
is in m
2
s
−1
,
T
is the temperature in K,
P
is the pressure in GPa, and
X
is the mole fraction of water and calculated as
X
= (
C
/18.015)/(
C
/18.015 + (100 −
C
)/33.14), where
C
is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000-
ad
eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H
2
O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite. |
doi_str_mv | 10.1007/s00410-009-0392-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_208182552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008973811</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-8dbbfdaa3a70852d02a9d20b46708e8c69e089b7d9b0e2cd50a0a0ba2704344a3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG_Be3SappsEvMjiP1jxongMkybdzdpt16Q9-O3NUsGTzGF4zHtv4EfIZQHXBYC8SQCiAAagGZSaM3lEZoUoOQO9kMdkBpCvUmt9Ss5S2kLWSlczcvuBg4_UhaYZU-g7Gjr60o_dQJcb7NYWA937iO0ntqHzNG6--zYMoaY73w7n5KTBNvmL3z0n7w_3b8sntnp9fF7erRgKUANTztrGIZYoQVXcAUftOFixyNqreqE9KG2l0xY8r10FmMcilyBKIbCck6updx_7r9GnwWz7MXb5peGgCsWrimdTMZnq2KcUfWP2MewwfpsCzIGRmRiZzMgcGBmZM3zKpOzt1j7-Ff8f-gGVamjn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208182552</pqid></control><display><type>article</type><title>Water diffusion in Mount Changbai peralkaline rhyolitic melt</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Haoyue ; Xu, Zhengjiu ; Behrens, Harald ; Zhang, Youxue</creator><creatorcontrib>Wang, Haoyue ; Xu, Zhengjiu ; Behrens, Harald ; Zhang, Youxue</creatorcontrib><description>Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as:
where
D
is in m
2
s
−1
,
T
is the temperature in K,
P
is the pressure in GPa, and
X
is the mole fraction of water and calculated as
X
= (
C
/18.015)/(
C
/18.015 + (100 −
C
)/33.14), where
C
is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000-
ad
eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H
2
O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-009-0392-7</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Earth and Environmental Science ; Earth Sciences ; Geology ; Mineral Resources ; Mineralogy ; Original Paper ; Petrology ; Volcanic eruptions ; Water content</subject><ispartof>Contributions to mineralogy and petrology, 2009-10, Vol.158 (4), p.471-484</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-8dbbfdaa3a70852d02a9d20b46708e8c69e089b7d9b0e2cd50a0a0ba2704344a3</citedby><cites>FETCH-LOGICAL-a408t-8dbbfdaa3a70852d02a9d20b46708e8c69e089b7d9b0e2cd50a0a0ba2704344a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-009-0392-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-009-0392-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Wang, Haoyue</creatorcontrib><creatorcontrib>Xu, Zhengjiu</creatorcontrib><creatorcontrib>Behrens, Harald</creatorcontrib><creatorcontrib>Zhang, Youxue</creatorcontrib><title>Water diffusion in Mount Changbai peralkaline rhyolitic melt</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as:
where
D
is in m
2
s
−1
,
T
is the temperature in K,
P
is the pressure in GPa, and
X
is the mole fraction of water and calculated as
X
= (
C
/18.015)/(
C
/18.015 + (100 −
C
)/33.14), where
C
is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000-
ad
eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H
2
O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.</description><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Volcanic eruptions</subject><subject>Water content</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG_Be3SappsEvMjiP1jxongMkybdzdpt16Q9-O3NUsGTzGF4zHtv4EfIZQHXBYC8SQCiAAagGZSaM3lEZoUoOQO9kMdkBpCvUmt9Ss5S2kLWSlczcvuBg4_UhaYZU-g7Gjr60o_dQJcb7NYWA937iO0ntqHzNG6--zYMoaY73w7n5KTBNvmL3z0n7w_3b8sntnp9fF7erRgKUANTztrGIZYoQVXcAUftOFixyNqreqE9KG2l0xY8r10FmMcilyBKIbCck6updx_7r9GnwWz7MXb5peGgCsWrimdTMZnq2KcUfWP2MewwfpsCzIGRmRiZzMgcGBmZM3zKpOzt1j7-Ff8f-gGVamjn</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Wang, Haoyue</creator><creator>Xu, Zhengjiu</creator><creator>Behrens, Harald</creator><creator>Zhang, Youxue</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>20091001</creationdate><title>Water diffusion in Mount Changbai peralkaline rhyolitic melt</title><author>Wang, Haoyue ; Xu, Zhengjiu ; Behrens, Harald ; Zhang, Youxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-8dbbfdaa3a70852d02a9d20b46708e8c69e089b7d9b0e2cd50a0a0ba2704344a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Volcanic eruptions</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haoyue</creatorcontrib><creatorcontrib>Xu, Zhengjiu</creatorcontrib><creatorcontrib>Behrens, Harald</creatorcontrib><creatorcontrib>Zhang, Youxue</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haoyue</au><au>Xu, Zhengjiu</au><au>Behrens, Harald</au><au>Zhang, Youxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water diffusion in Mount Changbai peralkaline rhyolitic melt</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>158</volume><issue>4</issue><spage>471</spage><epage>484</epage><pages>471-484</pages><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as:
where
D
is in m
2
s
−1
,
T
is the temperature in K,
P
is the pressure in GPa, and
X
is the mole fraction of water and calculated as
X
= (
C
/18.015)/(
C
/18.015 + (100 −
C
)/33.14), where
C
is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000-
ad
eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H
2
O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00410-009-0392-7</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to mineralogy and petrology, 2009-10, Vol.158 (4), p.471-484 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_proquest_journals_208182552 |
source | Springer Nature - Complete Springer Journals |
subjects | Earth and Environmental Science Earth Sciences Geology Mineral Resources Mineralogy Original Paper Petrology Volcanic eruptions Water content |
title | Water diffusion in Mount Changbai peralkaline rhyolitic melt |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20diffusion%20in%20Mount%20Changbai%20peralkaline%20rhyolitic%20melt&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Wang,%20Haoyue&rft.date=2009-10-01&rft.volume=158&rft.issue=4&rft.spage=471&rft.epage=484&rft.pages=471-484&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-009-0392-7&rft_dat=%3Cproquest_cross%3E2008973811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208182552&rft_id=info:pmid/&rfr_iscdi=true |