The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions

The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18 O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2009-01, Vol.157 (1), p.65-76
Hauptverfasser: Niedermeier, Dominik R. D., Putnis, Andrew, Geisler, Thorsten, Golla-Schindler, Ute, Putnis, Christine V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 65
container_title Contributions to mineralogy and petrology
container_volume 157
creator Niedermeier, Dominik R. D.
Putnis, Andrew
Geisler, Thorsten
Golla-Schindler, Ute
Putnis, Christine V.
description The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18 O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm −1 in K-feldspar formed in normal 16 O aqueous solution to ~457 cm −1 in the K-feldspar formed in 18 O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of 18 O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence 18 O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.
doi_str_mv 10.1007/s00410-008-0320-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_208181593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1593173431</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-f2410fda9871d8dd7adc4e9fe9c2bc5ae19870530eaa5560ebc55ec3000083c73</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAXv1UnSbJujLH7Bgpf1HGIy3XZtm5p0Yfffm1LBk6dh5n0M7xFyy-CeARQPESBnkAGUGQgOGT8jC5YLnoFaFedkAZDQQil1Sa5i3EPaSyUXBLc10g5tbfomdtRX1Jqx8T01vaP-eNphT5voRz8gxeNE2yFtEtx-mbahFbYuDiZEeugdBlqfXPBjjaEzLbW-d81kFq_JRWXaiDe_c0k-np-269ds8_7ytn7cZCaHfMwqnjJUzqiyYK50rjDO5qgqVJZ_WmmQJQSkADRGyhVgOkq0IqWBUthCLMnd7DsE_33AOOq9P4Q-vdQcSlYyqUQisZlkg48xYKWH0HQmnDQDPZWp5zJ1MtVTmZonDZ81MXFTBeHP-H_RD527eMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208181593</pqid></control><display><type>article</type><title>The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Niedermeier, Dominik R. D. ; Putnis, Andrew ; Geisler, Thorsten ; Golla-Schindler, Ute ; Putnis, Christine V.</creator><creatorcontrib>Niedermeier, Dominik R. D. ; Putnis, Andrew ; Geisler, Thorsten ; Golla-Schindler, Ute ; Putnis, Christine V.</creatorcontrib><description>The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18 O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm −1 in K-feldspar formed in normal 16 O aqueous solution to ~457 cm −1 in the K-feldspar formed in 18 O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of 18 O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence 18 O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-008-0320-2</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Crystallography ; Crystals ; Earth and Environmental Science ; Earth Sciences ; Geology ; Isotopes ; Mineral Resources ; Mineralogy ; Original Paper ; Oxygen ; Oxygen isotopes ; Petrology ; Spatial distribution</subject><ispartof>Contributions to mineralogy and petrology, 2009-01, Vol.157 (1), p.65-76</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-f2410fda9871d8dd7adc4e9fe9c2bc5ae19870530eaa5560ebc55ec3000083c73</citedby><cites>FETCH-LOGICAL-a404t-f2410fda9871d8dd7adc4e9fe9c2bc5ae19870530eaa5560ebc55ec3000083c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-008-0320-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-008-0320-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Niedermeier, Dominik R. D.</creatorcontrib><creatorcontrib>Putnis, Andrew</creatorcontrib><creatorcontrib>Geisler, Thorsten</creatorcontrib><creatorcontrib>Golla-Schindler, Ute</creatorcontrib><creatorcontrib>Putnis, Christine V.</creatorcontrib><title>The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18 O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm −1 in K-feldspar formed in normal 16 O aqueous solution to ~457 cm −1 in the K-feldspar formed in 18 O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of 18 O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence 18 O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.</description><subject>Crystallography</subject><subject>Crystals</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>Isotopes</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Oxygen isotopes</subject><subject>Petrology</subject><subject>Spatial distribution</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UE1LxDAQDaLguvoDvAXv1UnSbJujLH7Bgpf1HGIy3XZtm5p0Yfffm1LBk6dh5n0M7xFyy-CeARQPESBnkAGUGQgOGT8jC5YLnoFaFedkAZDQQil1Sa5i3EPaSyUXBLc10g5tbfomdtRX1Jqx8T01vaP-eNphT5voRz8gxeNE2yFtEtx-mbahFbYuDiZEeugdBlqfXPBjjaEzLbW-d81kFq_JRWXaiDe_c0k-np-269ds8_7ytn7cZCaHfMwqnjJUzqiyYK50rjDO5qgqVJZ_WmmQJQSkADRGyhVgOkq0IqWBUthCLMnd7DsE_33AOOq9P4Q-vdQcSlYyqUQisZlkg48xYKWH0HQmnDQDPZWp5zJ1MtVTmZonDZ81MXFTBeHP-H_RD527eMc</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Niedermeier, Dominik R. D.</creator><creator>Putnis, Andrew</creator><creator>Geisler, Thorsten</creator><creator>Golla-Schindler, Ute</creator><creator>Putnis, Christine V.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>20090101</creationdate><title>The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions</title><author>Niedermeier, Dominik R. D. ; Putnis, Andrew ; Geisler, Thorsten ; Golla-Schindler, Ute ; Putnis, Christine V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-f2410fda9871d8dd7adc4e9fe9c2bc5ae19870530eaa5560ebc55ec3000083c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Crystallography</topic><topic>Crystals</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>Isotopes</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Oxygen isotopes</topic><topic>Petrology</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niedermeier, Dominik R. D.</creatorcontrib><creatorcontrib>Putnis, Andrew</creatorcontrib><creatorcontrib>Geisler, Thorsten</creatorcontrib><creatorcontrib>Golla-Schindler, Ute</creatorcontrib><creatorcontrib>Putnis, Christine V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niedermeier, Dominik R. D.</au><au>Putnis, Andrew</au><au>Geisler, Thorsten</au><au>Golla-Schindler, Ute</au><au>Putnis, Christine V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2009-01-01</date><risdate>2009</risdate><volume>157</volume><issue>1</issue><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18 O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm −1 in K-feldspar formed in normal 16 O aqueous solution to ~457 cm −1 in the K-feldspar formed in 18 O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of 18 O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence 18 O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00410-008-0320-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2009-01, Vol.157 (1), p.65-76
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_208181593
source SpringerLink Journals - AutoHoldings
subjects Crystallography
Crystals
Earth and Environmental Science
Earth Sciences
Geology
Isotopes
Mineral Resources
Mineralogy
Original Paper
Oxygen
Oxygen isotopes
Petrology
Spatial distribution
title The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanism%20of%20cation%20and%20oxygen%20isotope%20exchange%20in%20alkali%20feldspars%20under%20hydrothermal%20conditions&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Niedermeier,%20Dominik%20R.%20D.&rft.date=2009-01-01&rft.volume=157&rft.issue=1&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-008-0320-2&rft_dat=%3Cproquest_cross%3E1593173431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208181593&rft_id=info:pmid/&rfr_iscdi=true