The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions
The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18 O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2009-01, Vol.157 (1), p.65-76 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Contributions to mineralogy and petrology |
container_volume | 157 |
creator | Niedermeier, Dominik R. D. Putnis, Andrew Geisler, Thorsten Golla-Schindler, Ute Putnis, Christine V. |
description | The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in
18
O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm
−1
in K-feldspar formed in normal
16
O aqueous solution to ~457 cm
−1
in the K-feldspar formed in
18
O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of
18
O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence
18
O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism. |
doi_str_mv | 10.1007/s00410-008-0320-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_208181593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1593173431</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-f2410fda9871d8dd7adc4e9fe9c2bc5ae19870530eaa5560ebc55ec3000083c73</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAXv1UnSbJujLH7Bgpf1HGIy3XZtm5p0Yfffm1LBk6dh5n0M7xFyy-CeARQPESBnkAGUGQgOGT8jC5YLnoFaFedkAZDQQil1Sa5i3EPaSyUXBLc10g5tbfomdtRX1Jqx8T01vaP-eNphT5voRz8gxeNE2yFtEtx-mbahFbYuDiZEeugdBlqfXPBjjaEzLbW-d81kFq_JRWXaiDe_c0k-np-269ds8_7ytn7cZCaHfMwqnjJUzqiyYK50rjDO5qgqVJZ_WmmQJQSkADRGyhVgOkq0IqWBUthCLMnd7DsE_33AOOq9P4Q-vdQcSlYyqUQisZlkg48xYKWH0HQmnDQDPZWp5zJ1MtVTmZonDZ81MXFTBeHP-H_RD527eMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208181593</pqid></control><display><type>article</type><title>The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Niedermeier, Dominik R. D. ; Putnis, Andrew ; Geisler, Thorsten ; Golla-Schindler, Ute ; Putnis, Christine V.</creator><creatorcontrib>Niedermeier, Dominik R. D. ; Putnis, Andrew ; Geisler, Thorsten ; Golla-Schindler, Ute ; Putnis, Christine V.</creatorcontrib><description>The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in
18
O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm
−1
in K-feldspar formed in normal
16
O aqueous solution to ~457 cm
−1
in the K-feldspar formed in
18
O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of
18
O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence
18
O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-008-0320-2</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Crystallography ; Crystals ; Earth and Environmental Science ; Earth Sciences ; Geology ; Isotopes ; Mineral Resources ; Mineralogy ; Original Paper ; Oxygen ; Oxygen isotopes ; Petrology ; Spatial distribution</subject><ispartof>Contributions to mineralogy and petrology, 2009-01, Vol.157 (1), p.65-76</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-f2410fda9871d8dd7adc4e9fe9c2bc5ae19870530eaa5560ebc55ec3000083c73</citedby><cites>FETCH-LOGICAL-a404t-f2410fda9871d8dd7adc4e9fe9c2bc5ae19870530eaa5560ebc55ec3000083c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-008-0320-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-008-0320-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Niedermeier, Dominik R. D.</creatorcontrib><creatorcontrib>Putnis, Andrew</creatorcontrib><creatorcontrib>Geisler, Thorsten</creatorcontrib><creatorcontrib>Golla-Schindler, Ute</creatorcontrib><creatorcontrib>Putnis, Christine V.</creatorcontrib><title>The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in
18
O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm
−1
in K-feldspar formed in normal
16
O aqueous solution to ~457 cm
−1
in the K-feldspar formed in
18
O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of
18
O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence
18
O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.</description><subject>Crystallography</subject><subject>Crystals</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>Isotopes</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Oxygen isotopes</subject><subject>Petrology</subject><subject>Spatial distribution</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UE1LxDAQDaLguvoDvAXv1UnSbJujLH7Bgpf1HGIy3XZtm5p0Yfffm1LBk6dh5n0M7xFyy-CeARQPESBnkAGUGQgOGT8jC5YLnoFaFedkAZDQQil1Sa5i3EPaSyUXBLc10g5tbfomdtRX1Jqx8T01vaP-eNphT5voRz8gxeNE2yFtEtx-mbahFbYuDiZEeugdBlqfXPBjjaEzLbW-d81kFq_JRWXaiDe_c0k-np-269ds8_7ytn7cZCaHfMwqnjJUzqiyYK50rjDO5qgqVJZ_WmmQJQSkADRGyhVgOkq0IqWBUthCLMnd7DsE_33AOOq9P4Q-vdQcSlYyqUQisZlkg48xYKWH0HQmnDQDPZWp5zJ1MtVTmZonDZ81MXFTBeHP-H_RD527eMc</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Niedermeier, Dominik R. D.</creator><creator>Putnis, Andrew</creator><creator>Geisler, Thorsten</creator><creator>Golla-Schindler, Ute</creator><creator>Putnis, Christine V.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>20090101</creationdate><title>The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions</title><author>Niedermeier, Dominik R. D. ; Putnis, Andrew ; Geisler, Thorsten ; Golla-Schindler, Ute ; Putnis, Christine V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-f2410fda9871d8dd7adc4e9fe9c2bc5ae19870530eaa5560ebc55ec3000083c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Crystallography</topic><topic>Crystals</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>Isotopes</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Oxygen isotopes</topic><topic>Petrology</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niedermeier, Dominik R. D.</creatorcontrib><creatorcontrib>Putnis, Andrew</creatorcontrib><creatorcontrib>Geisler, Thorsten</creatorcontrib><creatorcontrib>Golla-Schindler, Ute</creatorcontrib><creatorcontrib>Putnis, Christine V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niedermeier, Dominik R. D.</au><au>Putnis, Andrew</au><au>Geisler, Thorsten</au><au>Golla-Schindler, Ute</au><au>Putnis, Christine V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2009-01-01</date><risdate>2009</risdate><volume>157</volume><issue>1</issue><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in
18
O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm
−1
in K-feldspar formed in normal
16
O aqueous solution to ~457 cm
−1
in the K-feldspar formed in
18
O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of
18
O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence
18
O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00410-008-0320-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to mineralogy and petrology, 2009-01, Vol.157 (1), p.65-76 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_proquest_journals_208181593 |
source | SpringerLink Journals - AutoHoldings |
subjects | Crystallography Crystals Earth and Environmental Science Earth Sciences Geology Isotopes Mineral Resources Mineralogy Original Paper Oxygen Oxygen isotopes Petrology Spatial distribution |
title | The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanism%20of%20cation%20and%20oxygen%20isotope%20exchange%20in%20alkali%20feldspars%20under%20hydrothermal%20conditions&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Niedermeier,%20Dominik%20R.%20D.&rft.date=2009-01-01&rft.volume=157&rft.issue=1&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-008-0320-2&rft_dat=%3Cproquest_cross%3E1593173431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208181593&rft_id=info:pmid/&rfr_iscdi=true |