Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method

Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-04
Hauptverfasser: Lutsker, Vitalij, Balint Aradi, Niehaus, Thomas A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lutsker, Vitalij
Balint Aradi
Niehaus, Thomas A
description Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081810067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081810067</sourcerecordid><originalsourceid>FETCH-proquest_journals_20818100673</originalsourceid><addsrcrecordid>eNqNjLEOgjAURRsTE4nyDy9xJilFlN1odHc3hT6gCK_YPkz8ezVxcHQ6wz33zESksixNio1SCxGH0Ekp1Xan8jyLxOM8jD0OSKzZOgJNBkqkqh20v4GrQUPvqEm8pgahct5jxWignqj6HHQPloBbBIMULD9_l1KHt8q2aTkpLRlLDQzIrTMrMa91HzD-cinWx8Nlf0pG7-4TBr52bvLvRrgqWaRFKuV2l_1nvQAnAE2i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081810067</pqid></control><display><type>article</type><title>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</title><source>Free E- Journals</source><creator>Lutsker, Vitalij ; Balint Aradi ; Niehaus, Thomas A</creator><creatorcontrib>Lutsker, Vitalij ; Balint Aradi ; Niehaus, Thomas A</creatorcontrib><description>Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Binding ; Computer simulation ; Cures ; Density functional theory ; Dependence ; Electric fields ; First principles ; Ionization potentials ; Organic chemistry ; Photoelectrons ; Thermochemistry</subject><ispartof>arXiv.org, 2015-04</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Lutsker, Vitalij</creatorcontrib><creatorcontrib>Balint Aradi</creatorcontrib><creatorcontrib>Niehaus, Thomas A</creatorcontrib><title>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</title><title>arXiv.org</title><description>Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.</description><subject>Benchmarks</subject><subject>Binding</subject><subject>Computer simulation</subject><subject>Cures</subject><subject>Density functional theory</subject><subject>Dependence</subject><subject>Electric fields</subject><subject>First principles</subject><subject>Ionization potentials</subject><subject>Organic chemistry</subject><subject>Photoelectrons</subject><subject>Thermochemistry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLEOgjAURRsTE4nyDy9xJilFlN1odHc3hT6gCK_YPkz8ezVxcHQ6wz33zESksixNio1SCxGH0Ekp1Xan8jyLxOM8jD0OSKzZOgJNBkqkqh20v4GrQUPvqEm8pgahct5jxWignqj6HHQPloBbBIMULD9_l1KHt8q2aTkpLRlLDQzIrTMrMa91HzD-cinWx8Nlf0pG7-4TBr52bvLvRrgqWaRFKuV2l_1nvQAnAE2i</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Lutsker, Vitalij</creator><creator>Balint Aradi</creator><creator>Niehaus, Thomas A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150401</creationdate><title>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</title><author>Lutsker, Vitalij ; Balint Aradi ; Niehaus, Thomas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20818100673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benchmarks</topic><topic>Binding</topic><topic>Computer simulation</topic><topic>Cures</topic><topic>Density functional theory</topic><topic>Dependence</topic><topic>Electric fields</topic><topic>First principles</topic><topic>Ionization potentials</topic><topic>Organic chemistry</topic><topic>Photoelectrons</topic><topic>Thermochemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Lutsker, Vitalij</creatorcontrib><creatorcontrib>Balint Aradi</creatorcontrib><creatorcontrib>Niehaus, Thomas A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutsker, Vitalij</au><au>Balint Aradi</au><au>Niehaus, Thomas A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</atitle><jtitle>arXiv.org</jtitle><date>2015-04-01</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081810067
source Free E- Journals
subjects Benchmarks
Binding
Computer simulation
Cures
Density functional theory
Dependence
Electric fields
First principles
Ionization potentials
Organic chemistry
Photoelectrons
Thermochemistry
title Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Implementation%20and%20benchmark%20of%20a%20long-range%20corrected%20functional%20in%20the%20density%20functional%20based%20tight-binding%20method&rft.jtitle=arXiv.org&rft.au=Lutsker,%20Vitalij&rft.date=2015-04-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081810067%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081810067&rft_id=info:pmid/&rfr_iscdi=true