On norm resolvent convergence of Schrödinger operators with \(\delta'\)-like potentials
We address the problem on the right definition of the Schroedinger operator with potential \(\delta'\), where \(\delta\) is the Dirac delta-function. Namely, we prove the uniform resolvent convergence of a family of Schroedinger operators with regularized short-range potentials \(\epsilon^{-2}V...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Golovaty, Yu D Hryniv, R O |
description | We address the problem on the right definition of the Schroedinger operator with potential \(\delta'\), where \(\delta\) is the Dirac delta-function. Namely, we prove the uniform resolvent convergence of a family of Schroedinger operators with regularized short-range potentials \(\epsilon^{-2}V(x/\epsilon)\) tending to \(\delta'\) in the distributional sense as \(\epsilon\to 0\). In 1986, P. Seba claimed that the limit coincides with the direct sum of free Schroedinger operators on the semi-axes with the Dirichlet boundary condition at the origin, which implies that in dimension one there is no non-trivial Hamiltonians with potential \(\delta'\). Our results demonstrate that, although the above statement is true for many V, for the so-called resonant V the limit operator is defined by the non-trivial interface condition at the origin determined by some spectral characteristics of V. In this resonant case, we show that there is a partial transmission of the wave package for the limiting Hamiltonian. |
doi_str_mv | 10.48550/arxiv.0911.1046 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081785081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081785081</sourcerecordid><originalsourceid>FETCH-proquest_journals_20817850813</originalsourceid><addsrcrecordid>eNqNjLFuwjAURS0kpCJg7_gkhtIhqe3EEGZExcYAQ4dIKAoPMAS_9NmEfll_gB8jAx_Acs5wrq4Q70rGaWaM_Cr4zzaxnCkVK5lOOqKnk0RFWar1mxh6f5JS6slUG5P0xM_KgSO-AKOnqkEXoCTXIB_QlQi0h3V55Pv_zroDMlCNXARiDzcbjpCP8x1WofjIP6PKnhFqCu2FLSo_EN19Kxw-3Rej78Vmvoxqpt8r-rA90ZVdm7ZaZmqamZbJa6sHXQlIzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081785081</pqid></control><display><type>article</type><title>On norm resolvent convergence of Schrödinger operators with \(\delta'\)-like potentials</title><source>Free E- Journals</source><creator>Golovaty, Yu D ; Hryniv, R O</creator><creatorcontrib>Golovaty, Yu D ; Hryniv, R O</creatorcontrib><description>We address the problem on the right definition of the Schroedinger operator with potential \(\delta'\), where \(\delta\) is the Dirac delta-function. Namely, we prove the uniform resolvent convergence of a family of Schroedinger operators with regularized short-range potentials \(\epsilon^{-2}V(x/\epsilon)\) tending to \(\delta'\) in the distributional sense as \(\epsilon\to 0\). In 1986, P. Seba claimed that the limit coincides with the direct sum of free Schroedinger operators on the semi-axes with the Dirichlet boundary condition at the origin, which implies that in dimension one there is no non-trivial Hamiltonians with potential \(\delta'\). Our results demonstrate that, although the above statement is true for many V, for the so-called resonant V the limit operator is defined by the non-trivial interface condition at the origin determined by some spectral characteristics of V. In this resonant case, we show that there is a partial transmission of the wave package for the limiting Hamiltonian.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0911.1046</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Convergence ; Dirichlet problem ; Operators (mathematics)</subject><ispartof>arXiv.org, 2010-11</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Golovaty, Yu D</creatorcontrib><creatorcontrib>Hryniv, R O</creatorcontrib><title>On norm resolvent convergence of Schrödinger operators with \(\delta'\)-like potentials</title><title>arXiv.org</title><description>We address the problem on the right definition of the Schroedinger operator with potential \(\delta'\), where \(\delta\) is the Dirac delta-function. Namely, we prove the uniform resolvent convergence of a family of Schroedinger operators with regularized short-range potentials \(\epsilon^{-2}V(x/\epsilon)\) tending to \(\delta'\) in the distributional sense as \(\epsilon\to 0\). In 1986, P. Seba claimed that the limit coincides with the direct sum of free Schroedinger operators on the semi-axes with the Dirichlet boundary condition at the origin, which implies that in dimension one there is no non-trivial Hamiltonians with potential \(\delta'\). Our results demonstrate that, although the above statement is true for many V, for the so-called resonant V the limit operator is defined by the non-trivial interface condition at the origin determined by some spectral characteristics of V. In this resonant case, we show that there is a partial transmission of the wave package for the limiting Hamiltonian.</description><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Dirichlet problem</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjLFuwjAURS0kpCJg7_gkhtIhqe3EEGZExcYAQ4dIKAoPMAS_9NmEfll_gB8jAx_Acs5wrq4Q70rGaWaM_Cr4zzaxnCkVK5lOOqKnk0RFWar1mxh6f5JS6slUG5P0xM_KgSO-AKOnqkEXoCTXIB_QlQi0h3V55Pv_zroDMlCNXARiDzcbjpCP8x1WofjIP6PKnhFqCu2FLSo_EN19Kxw-3Rej78Vmvoxqpt8r-rA90ZVdm7ZaZmqamZbJa6sHXQlIzA</recordid><startdate>20101127</startdate><enddate>20101127</enddate><creator>Golovaty, Yu D</creator><creator>Hryniv, R O</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20101127</creationdate><title>On norm resolvent convergence of Schrödinger operators with \(\delta'\)-like potentials</title><author>Golovaty, Yu D ; Hryniv, R O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20817850813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Dirichlet problem</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Golovaty, Yu D</creatorcontrib><creatorcontrib>Hryniv, R O</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golovaty, Yu D</au><au>Hryniv, R O</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On norm resolvent convergence of Schrödinger operators with \(\delta'\)-like potentials</atitle><jtitle>arXiv.org</jtitle><date>2010-11-27</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>We address the problem on the right definition of the Schroedinger operator with potential \(\delta'\), where \(\delta\) is the Dirac delta-function. Namely, we prove the uniform resolvent convergence of a family of Schroedinger operators with regularized short-range potentials \(\epsilon^{-2}V(x/\epsilon)\) tending to \(\delta'\) in the distributional sense as \(\epsilon\to 0\). In 1986, P. Seba claimed that the limit coincides with the direct sum of free Schroedinger operators on the semi-axes with the Dirichlet boundary condition at the origin, which implies that in dimension one there is no non-trivial Hamiltonians with potential \(\delta'\). Our results demonstrate that, although the above statement is true for many V, for the so-called resonant V the limit operator is defined by the non-trivial interface condition at the origin determined by some spectral characteristics of V. In this resonant case, we show that there is a partial transmission of the wave package for the limiting Hamiltonian.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0911.1046</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081785081 |
source | Free E- Journals |
subjects | Boundary conditions Convergence Dirichlet problem Operators (mathematics) |
title | On norm resolvent convergence of Schrödinger operators with \(\delta'\)-like potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20norm%20resolvent%20convergence%20of%20Schr%C3%B6dinger%20operators%20with%20%5C(%5Cdelta'%5C)-like%20potentials&rft.jtitle=arXiv.org&rft.au=Golovaty,%20Yu%20D&rft.date=2010-11-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0911.1046&rft_dat=%3Cproquest%3E2081785081%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081785081&rft_id=info:pmid/&rfr_iscdi=true |