Word Representations via Gaussian Embedding
Current work in lexical distributed representations maps each word to a point vector in low-dimensional space. Mapping instead to a density provides many interesting advantages, including better capturing uncertainty about a representation and its relationships, expressing asymmetries more naturally...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Luke Vilnis McCallum, Andrew |
description | Current work in lexical distributed representations maps each word to a point vector in low-dimensional space. Mapping instead to a density provides many interesting advantages, including better capturing uncertainty about a representation and its relationships, expressing asymmetries more naturally than dot product or cosine similarity, and enabling more expressive parameterization of decision boundaries. This paper advocates for density-based distributed embeddings and presents a method for learning representations in the space of Gaussian distributions. We compare performance on various word embedding benchmarks, investigate the ability of these embeddings to model entailment and other asymmetric relationships, and explore novel properties of the representation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081770500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081770500</sourcerecordid><originalsourceid>FETCH-proquest_journals_20817705003</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDs8vSlEISi0oSi1OzStJLMnMzytWKMtMVHBPLC0uzkzMU3DNTUpNScnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtDc3MDUwMDY-JUAQBdNTFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081770500</pqid></control><display><type>article</type><title>Word Representations via Gaussian Embedding</title><source>Freely Accessible Journals</source><creator>Luke Vilnis ; McCallum, Andrew</creator><creatorcontrib>Luke Vilnis ; McCallum, Andrew</creatorcontrib><description>Current work in lexical distributed representations maps each word to a point vector in low-dimensional space. Mapping instead to a density provides many interesting advantages, including better capturing uncertainty about a representation and its relationships, expressing asymmetries more naturally than dot product or cosine similarity, and enabling more expressive parameterization of decision boundaries. This paper advocates for density-based distributed embeddings and presents a method for learning representations in the space of Gaussian distributions. We compare performance on various word embedding benchmarks, investigate the ability of these embeddings to model entailment and other asymmetric relationships, and explore novel properties of the representation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Current distribution ; Density ; Embedding ; Mapping ; Parameterization ; Representations</subject><ispartof>arXiv.org, 2015-05</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Luke Vilnis</creatorcontrib><creatorcontrib>McCallum, Andrew</creatorcontrib><title>Word Representations via Gaussian Embedding</title><title>arXiv.org</title><description>Current work in lexical distributed representations maps each word to a point vector in low-dimensional space. Mapping instead to a density provides many interesting advantages, including better capturing uncertainty about a representation and its relationships, expressing asymmetries more naturally than dot product or cosine similarity, and enabling more expressive parameterization of decision boundaries. This paper advocates for density-based distributed embeddings and presents a method for learning representations in the space of Gaussian distributions. We compare performance on various word embedding benchmarks, investigate the ability of these embeddings to model entailment and other asymmetric relationships, and explore novel properties of the representation.</description><subject>Current distribution</subject><subject>Density</subject><subject>Embedding</subject><subject>Mapping</subject><subject>Parameterization</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDs8vSlEISi0oSi1OzStJLMnMzytWKMtMVHBPLC0uzkzMU3DNTUpNScnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtDc3MDUwMDY-JUAQBdNTFI</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Luke Vilnis</creator><creator>McCallum, Andrew</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150501</creationdate><title>Word Representations via Gaussian Embedding</title><author>Luke Vilnis ; McCallum, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20817705003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Current distribution</topic><topic>Density</topic><topic>Embedding</topic><topic>Mapping</topic><topic>Parameterization</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Luke Vilnis</creatorcontrib><creatorcontrib>McCallum, Andrew</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luke Vilnis</au><au>McCallum, Andrew</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Word Representations via Gaussian Embedding</atitle><jtitle>arXiv.org</jtitle><date>2015-05-01</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Current work in lexical distributed representations maps each word to a point vector in low-dimensional space. Mapping instead to a density provides many interesting advantages, including better capturing uncertainty about a representation and its relationships, expressing asymmetries more naturally than dot product or cosine similarity, and enabling more expressive parameterization of decision boundaries. This paper advocates for density-based distributed embeddings and presents a method for learning representations in the space of Gaussian distributions. We compare performance on various word embedding benchmarks, investigate the ability of these embeddings to model entailment and other asymmetric relationships, and explore novel properties of the representation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081770500 |
source | Freely Accessible Journals |
subjects | Current distribution Density Embedding Mapping Parameterization Representations |
title | Word Representations via Gaussian Embedding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Word%20Representations%20via%20Gaussian%20Embedding&rft.jtitle=arXiv.org&rft.au=Luke%20Vilnis&rft.date=2015-05-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081770500%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081770500&rft_id=info:pmid/&rfr_iscdi=true |