Semiparametric Regression with Kernel Error Model

We propose and study a class of regression models, in which the mean function is specified parametricaUy as in the existing regression methods, but the residual distribution is modelled non-parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2007-12, Vol.34 (4), p.841-869
Hauptverfasser: YUAN, AO, DE GOOIJER, JAN G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 4
container_start_page 841
container_title Scandinavian journal of statistics
container_volume 34
creator YUAN, AO
DE GOOIJER, JAN G.
description We propose and study a class of regression models, in which the mean function is specified parametricaUy as in the existing regression methods, but the residual distribution is modelled non-parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification is different from the existing semiparametric regression models. The asymptotic properties of such likelihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We show that under some regularity conditions, the MLE under this model is consistent (when compared with the possibly pseudo-consistency of the parameter estimation under the existing parametric regression model), is asymptotically normal with rate $\sqrt n $ and efficient. The non-parametric pseudo-likelihood ratio has the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the accuracy of the proposed semiparametric MLE method.
doi_str_mv 10.1111/j.1467-9469.2006.00531.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_208172052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41548584</jstor_id><sourcerecordid>41548584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5471-7be87c26f3fa702bb130e8bc47fac819577cb37cfd2e64fdcdf0623b7e06d9a13</originalsourceid><addsrcrecordid>eNqNkF-L1DAUxYMoOK5-BKEIPrYmTZo_Dz7Iso6uowvOiuDLJU1v3NbOtJt03Zlvb2qX8dXATULu-d0cDiEZowVL601XMCFVboQ0RUmpLCitOCsOj8jq1HhMVpRTnktt9FPyLMaOUiYF0yvCtrhrRxvsDqfQuuwr_gwYYzvss_t2usk-Ydhjn12EMITs89Bg_5w88baP-OLhPCPf3l9cn3_IN1frj-fvNrmrhGK5qlErV0rPvVW0rGvGKeraCeWt08xUSrmaK-ebEqXwjWs8lSWvFVLZGMv4GXm1zB3DcHuHcYJuuAv79CWUVDNV0qpMIr2IXBhiDOhhDO3OhiMwCnM-0MEcA8wxwJwP_M0HDgm9XNCAI7oTV_c2ui5OFn4Dt1yk7ZgqoSodbar5aUylBQOdpt5MuzTs9YPZRNveB7t3bfxnxhjGmTRJ93bR3bc9Hv_bLGwvr7bplviXC58cDuHEC1YJXWmR-vnSb-OEh1Pfhl8gFVcVfP-yBrOR9Idga7jmfwCec6ne</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208172052</pqid></control><display><type>article</type><title>Semiparametric Regression with Kernel Error Model</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><creator>YUAN, AO ; DE GOOIJER, JAN G.</creator><creatorcontrib>YUAN, AO ; DE GOOIJER, JAN G.</creatorcontrib><description>We propose and study a class of regression models, in which the mean function is specified parametricaUy as in the existing regression methods, but the residual distribution is modelled non-parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification is different from the existing semiparametric regression models. The asymptotic properties of such likelihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We show that under some regularity conditions, the MLE under this model is consistent (when compared with the possibly pseudo-consistency of the parameter estimation under the existing parametric regression model), is asymptotically normal with rate $\sqrt n $ and efficient. The non-parametric pseudo-likelihood ratio has the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the accuracy of the proposed semiparametric MLE method.</description><identifier>ISSN: 0303-6898</identifier><identifier>EISSN: 1467-9469</identifier><identifier>DOI: 10.1111/j.1467-9469.2006.00531.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Density estimation ; Distribution theory ; Entropy ; Errors ; Estimation methods ; Estimators ; Exact sciences and technology ; General topics ; information bound ; kernel density estimator ; Linear inference, regression ; Mathematics ; maximum likelihood estimate ; Maximum likelihood estimation ; nonlinear regression ; Parameter estimation ; Parametric inference ; Parametric models ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Regression analysis ; Sciences and techniques of general use ; semiparametric model ; Semiparametric modeling ; Statistical variance ; Statistics ; U-statistic ; Wilks property</subject><ispartof>Scandinavian journal of statistics, 2007-12, Vol.34 (4), p.841-869</ispartof><rights>Board of the Foundation of the Scandinavian Journal of Statistics 2007</rights><rights>2008 INIST-CNRS</rights><rights>2007 Board of the Foundation of the Scandinavian Journal of Statistics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5471-7be87c26f3fa702bb130e8bc47fac819577cb37cfd2e64fdcdf0623b7e06d9a13</citedby><cites>FETCH-LOGICAL-c5471-7be87c26f3fa702bb130e8bc47fac819577cb37cfd2e64fdcdf0623b7e06d9a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41548584$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41548584$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3993,27903,27904,45553,45554,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19913169$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blascjsta/v_3a34_3ay_3a2007_3ai_3a4_3ap_3a841-869.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>YUAN, AO</creatorcontrib><creatorcontrib>DE GOOIJER, JAN G.</creatorcontrib><title>Semiparametric Regression with Kernel Error Model</title><title>Scandinavian journal of statistics</title><description>We propose and study a class of regression models, in which the mean function is specified parametricaUy as in the existing regression methods, but the residual distribution is modelled non-parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification is different from the existing semiparametric regression models. The asymptotic properties of such likelihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We show that under some regularity conditions, the MLE under this model is consistent (when compared with the possibly pseudo-consistency of the parameter estimation under the existing parametric regression model), is asymptotically normal with rate $\sqrt n $ and efficient. The non-parametric pseudo-likelihood ratio has the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the accuracy of the proposed semiparametric MLE method.</description><subject>Density estimation</subject><subject>Distribution theory</subject><subject>Entropy</subject><subject>Errors</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>information bound</subject><subject>kernel density estimator</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>maximum likelihood estimate</subject><subject>Maximum likelihood estimation</subject><subject>nonlinear regression</subject><subject>Parameter estimation</subject><subject>Parametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>semiparametric model</subject><subject>Semiparametric modeling</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>U-statistic</subject><subject>Wilks property</subject><issn>0303-6898</issn><issn>1467-9469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkF-L1DAUxYMoOK5-BKEIPrYmTZo_Dz7Iso6uowvOiuDLJU1v3NbOtJt03Zlvb2qX8dXATULu-d0cDiEZowVL601XMCFVboQ0RUmpLCitOCsOj8jq1HhMVpRTnktt9FPyLMaOUiYF0yvCtrhrRxvsDqfQuuwr_gwYYzvss_t2usk-Ydhjn12EMITs89Bg_5w88baP-OLhPCPf3l9cn3_IN1frj-fvNrmrhGK5qlErV0rPvVW0rGvGKeraCeWt08xUSrmaK-ebEqXwjWs8lSWvFVLZGMv4GXm1zB3DcHuHcYJuuAv79CWUVDNV0qpMIr2IXBhiDOhhDO3OhiMwCnM-0MEcA8wxwJwP_M0HDgm9XNCAI7oTV_c2ui5OFn4Dt1yk7ZgqoSodbar5aUylBQOdpt5MuzTs9YPZRNveB7t3bfxnxhjGmTRJ93bR3bc9Hv_bLGwvr7bplviXC58cDuHEC1YJXWmR-vnSb-OEh1Pfhl8gFVcVfP-yBrOR9Idga7jmfwCec6ne</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>YUAN, AO</creator><creator>DE GOOIJER, JAN G.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><general>Danish Society for Theoretical Statistics</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200712</creationdate><title>Semiparametric Regression with Kernel Error Model</title><author>YUAN, AO ; DE GOOIJER, JAN G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5471-7be87c26f3fa702bb130e8bc47fac819577cb37cfd2e64fdcdf0623b7e06d9a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Density estimation</topic><topic>Distribution theory</topic><topic>Entropy</topic><topic>Errors</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>information bound</topic><topic>kernel density estimator</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>maximum likelihood estimate</topic><topic>Maximum likelihood estimation</topic><topic>nonlinear regression</topic><topic>Parameter estimation</topic><topic>Parametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>semiparametric model</topic><topic>Semiparametric modeling</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>U-statistic</topic><topic>Wilks property</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YUAN, AO</creatorcontrib><creatorcontrib>DE GOOIJER, JAN G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scandinavian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YUAN, AO</au><au>DE GOOIJER, JAN G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric Regression with Kernel Error Model</atitle><jtitle>Scandinavian journal of statistics</jtitle><date>2007-12</date><risdate>2007</risdate><volume>34</volume><issue>4</issue><spage>841</spage><epage>869</epage><pages>841-869</pages><issn>0303-6898</issn><eissn>1467-9469</eissn><abstract>We propose and study a class of regression models, in which the mean function is specified parametricaUy as in the existing regression methods, but the residual distribution is modelled non-parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification is different from the existing semiparametric regression models. The asymptotic properties of such likelihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We show that under some regularity conditions, the MLE under this model is consistent (when compared with the possibly pseudo-consistency of the parameter estimation under the existing parametric regression model), is asymptotically normal with rate $\sqrt n $ and efficient. The non-parametric pseudo-likelihood ratio has the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the accuracy of the proposed semiparametric MLE method.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9469.2006.00531.x</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6898
ispartof Scandinavian journal of statistics, 2007-12, Vol.34 (4), p.841-869
issn 0303-6898
1467-9469
language eng
recordid cdi_proquest_journals_208172052
source RePEc; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; Jstor Complete Legacy
subjects Density estimation
Distribution theory
Entropy
Errors
Estimation methods
Estimators
Exact sciences and technology
General topics
information bound
kernel density estimator
Linear inference, regression
Mathematics
maximum likelihood estimate
Maximum likelihood estimation
nonlinear regression
Parameter estimation
Parametric inference
Parametric models
Probability and statistics
Probability theory and stochastic processes
Random variables
Regression analysis
Sciences and techniques of general use
semiparametric model
Semiparametric modeling
Statistical variance
Statistics
U-statistic
Wilks property
title Semiparametric Regression with Kernel Error Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20Regression%20with%20Kernel%20Error%20Model&rft.jtitle=Scandinavian%20journal%20of%20statistics&rft.au=YUAN,%20AO&rft.date=2007-12&rft.volume=34&rft.issue=4&rft.spage=841&rft.epage=869&rft.pages=841-869&rft.issn=0303-6898&rft.eissn=1467-9469&rft_id=info:doi/10.1111/j.1467-9469.2006.00531.x&rft_dat=%3Cjstor_proqu%3E41548584%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208172052&rft_id=info:pmid/&rft_jstor_id=41548584&rfr_iscdi=true