Reversals of Least-Squares Estimates and Model-Independent Estimation for Directions of Unique Effects

When a linear model is adjusted to control for additional explanatory variables the sign of a fitted coefficient may reverse. Here these reversals are studied using coefficients of determination. The resulting theory can be used to determine directions of unique effects in the presence of substantia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-03
Hauptverfasser: Knaeble, Brian, Dutter, Seth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Knaeble, Brian
Dutter, Seth
description When a linear model is adjusted to control for additional explanatory variables the sign of a fitted coefficient may reverse. Here these reversals are studied using coefficients of determination. The resulting theory can be used to determine directions of unique effects in the presence of substantial model uncertainty. This process is called model-independent estimation when the estimates are invariant across changes to the model structure. When a single covariate is added, the reversal region can be understood geometrically as an elliptical cone of two nappes with an axis of symmetry relating to a best-possible condition for a reversal using a single coefficient of determination. When a set of covariates are added to a model with a single explanatory variable, model-independent estimation can be implemented using subject matter knowledge. More general theory with partial coefficients is applicable to analysis of large data sets. Applications are demonstrated with dietary health data from the United Nations. Necessary conditions for Simpson's paradox are derived.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081716540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081716540</sourcerecordid><originalsourceid>FETCH-proquest_journals_20817165403</originalsourceid><addsrcrecordid>eNqNjUsLwjAQhIMgWLT_IeA5kKbPu1YU9OLjXILdQEpN2mzq7zeK3r3szux8zM5IJNI0YVUmxILEiB3nXBSlyPM0IuoMT3Aoe6RW0SNI9OwyTtIB0hq9fkgflDQtPdkWenYwLQwQhvG_XFtDlXV0qx3c3-5TdTN6nIDWSoUjrshchR8Qf_eSrHf1dbNng7MBQ990dnImRI3gVVImRZ7x9D_qBb6WRxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081716540</pqid></control><display><type>article</type><title>Reversals of Least-Squares Estimates and Model-Independent Estimation for Directions of Unique Effects</title><source>Free E- Journals</source><creator>Knaeble, Brian ; Dutter, Seth</creator><creatorcontrib>Knaeble, Brian ; Dutter, Seth</creatorcontrib><description>When a linear model is adjusted to control for additional explanatory variables the sign of a fitted coefficient may reverse. Here these reversals are studied using coefficients of determination. The resulting theory can be used to determine directions of unique effects in the presence of substantial model uncertainty. This process is called model-independent estimation when the estimates are invariant across changes to the model structure. When a single covariate is added, the reversal region can be understood geometrically as an elliptical cone of two nappes with an axis of symmetry relating to a best-possible condition for a reversal using a single coefficient of determination. When a set of covariates are added to a model with a single explanatory variable, model-independent estimation can be implemented using subject matter knowledge. More general theory with partial coefficients is applicable to analysis of large data sets. Applications are demonstrated with dietary health data from the United Nations. Necessary conditions for Simpson's paradox are derived.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coefficients ; Mathematical models ; Uniqueness</subject><ispartof>arXiv.org, 2015-03</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Knaeble, Brian</creatorcontrib><creatorcontrib>Dutter, Seth</creatorcontrib><title>Reversals of Least-Squares Estimates and Model-Independent Estimation for Directions of Unique Effects</title><title>arXiv.org</title><description>When a linear model is adjusted to control for additional explanatory variables the sign of a fitted coefficient may reverse. Here these reversals are studied using coefficients of determination. The resulting theory can be used to determine directions of unique effects in the presence of substantial model uncertainty. This process is called model-independent estimation when the estimates are invariant across changes to the model structure. When a single covariate is added, the reversal region can be understood geometrically as an elliptical cone of two nappes with an axis of symmetry relating to a best-possible condition for a reversal using a single coefficient of determination. When a set of covariates are added to a model with a single explanatory variable, model-independent estimation can be implemented using subject matter knowledge. More general theory with partial coefficients is applicable to analysis of large data sets. Applications are demonstrated with dietary health data from the United Nations. Necessary conditions for Simpson's paradox are derived.</description><subject>Coefficients</subject><subject>Mathematical models</subject><subject>Uniqueness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjUsLwjAQhIMgWLT_IeA5kKbPu1YU9OLjXILdQEpN2mzq7zeK3r3szux8zM5IJNI0YVUmxILEiB3nXBSlyPM0IuoMT3Aoe6RW0SNI9OwyTtIB0hq9fkgflDQtPdkWenYwLQwQhvG_XFtDlXV0qx3c3-5TdTN6nIDWSoUjrshchR8Qf_eSrHf1dbNng7MBQ990dnImRI3gVVImRZ7x9D_qBb6WRxc</recordid><startdate>20150309</startdate><enddate>20150309</enddate><creator>Knaeble, Brian</creator><creator>Dutter, Seth</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150309</creationdate><title>Reversals of Least-Squares Estimates and Model-Independent Estimation for Directions of Unique Effects</title><author>Knaeble, Brian ; Dutter, Seth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20817165403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coefficients</topic><topic>Mathematical models</topic><topic>Uniqueness</topic><toplevel>online_resources</toplevel><creatorcontrib>Knaeble, Brian</creatorcontrib><creatorcontrib>Dutter, Seth</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knaeble, Brian</au><au>Dutter, Seth</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reversals of Least-Squares Estimates and Model-Independent Estimation for Directions of Unique Effects</atitle><jtitle>arXiv.org</jtitle><date>2015-03-09</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>When a linear model is adjusted to control for additional explanatory variables the sign of a fitted coefficient may reverse. Here these reversals are studied using coefficients of determination. The resulting theory can be used to determine directions of unique effects in the presence of substantial model uncertainty. This process is called model-independent estimation when the estimates are invariant across changes to the model structure. When a single covariate is added, the reversal region can be understood geometrically as an elliptical cone of two nappes with an axis of symmetry relating to a best-possible condition for a reversal using a single coefficient of determination. When a set of covariates are added to a model with a single explanatory variable, model-independent estimation can be implemented using subject matter knowledge. More general theory with partial coefficients is applicable to analysis of large data sets. Applications are demonstrated with dietary health data from the United Nations. Necessary conditions for Simpson's paradox are derived.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081716540
source Free E- Journals
subjects Coefficients
Mathematical models
Uniqueness
title Reversals of Least-Squares Estimates and Model-Independent Estimation for Directions of Unique Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reversals%20of%20Least-Squares%20Estimates%20and%20Model-Independent%20Estimation%20for%20Directions%20of%20Unique%20Effects&rft.jtitle=arXiv.org&rft.au=Knaeble,%20Brian&rft.date=2015-03-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081716540%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081716540&rft_id=info:pmid/&rfr_iscdi=true