Error estimates for splitting methods based on AMF-Runge-Kutta formulas for the time integration of advection diffusion reaction PDEs

The convergence of a family of AMF-Runge-Kutta methods (in short AMF-RK) for the time integration of evolutionary Partial Differential Equations (PDEs) of Advection Diffusion Reaction type semi-discretized in space is considered. The methods are based on very few inexact Newton Iterations of Aproxim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-01
Hauptverfasser: Severiano Gonzalez Pinto, Domingo Hernandez Abreu, Soledad Perez Rodriguez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Severiano Gonzalez Pinto
Domingo Hernandez Abreu
Soledad Perez Rodriguez
description The convergence of a family of AMF-Runge-Kutta methods (in short AMF-RK) for the time integration of evolutionary Partial Differential Equations (PDEs) of Advection Diffusion Reaction type semi-discretized in space is considered. The methods are based on very few inexact Newton Iterations of Aproximate Matrix Factorization splitting-type (AMF) applied to the Implicit Runge-Kutta formulas, which allows very cheap and inexact implementations of the underlying Runge-Kutta formula. Particular AMF-RK methods based on Radau IIA formulas are considered. These methods have given very competitive results when compared with important formulas in the literature for multidimensional systems of non-linear parabolic PDE problems. Uniform bounds for the global time-space errors on semi-linear PDEs when simultaneously the time step-size and the spatial grid resolution tend to zero are derived. Numerical illustrations supporting the theory are presented.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081708979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081708979</sourcerecordid><originalsourceid>FETCH-proquest_journals_20817089793</originalsourceid><addsrcrecordid>eNqNjl2KwjAQx4OwoLjeYcDnQkxXWx9FK4IsyLLvEu2kRtpEMxNv4L2NqwfYp5n_x2-YnhioPJ9k5ZdSfTEiOksp1axQ02k-EPcqBB8AiW2nGQlMUnRpLbN1DXTIJ18THDRhDd7B4nud_UTXYLaNzPpZ72KrXxyfENIdBOsYm6DZJsIb0PUNj3-itsZEem4B9cvarSr6FB9Gt4Sj9xyK8br6XW6yS_DXmJ7bn30MLkV7JctJIct5Mc__13oABJZS1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081708979</pqid></control><display><type>article</type><title>Error estimates for splitting methods based on AMF-Runge-Kutta formulas for the time integration of advection diffusion reaction PDEs</title><source>Free E- Journals</source><creator>Severiano Gonzalez Pinto ; Domingo Hernandez Abreu ; Soledad Perez Rodriguez</creator><creatorcontrib>Severiano Gonzalez Pinto ; Domingo Hernandez Abreu ; Soledad Perez Rodriguez</creatorcontrib><description>The convergence of a family of AMF-Runge-Kutta methods (in short AMF-RK) for the time integration of evolutionary Partial Differential Equations (PDEs) of Advection Diffusion Reaction type semi-discretized in space is considered. The methods are based on very few inexact Newton Iterations of Aproximate Matrix Factorization splitting-type (AMF) applied to the Implicit Runge-Kutta formulas, which allows very cheap and inexact implementations of the underlying Runge-Kutta formula. Particular AMF-RK methods based on Radau IIA formulas are considered. These methods have given very competitive results when compared with important formulas in the literature for multidimensional systems of non-linear parabolic PDE problems. Uniform bounds for the global time-space errors on semi-linear PDEs when simultaneously the time step-size and the spatial grid resolution tend to zero are derived. Numerical illustrations supporting the theory are presented.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Advection ; Nonlinear systems ; Parabolic differential equations ; Partial differential equations ; Runge-Kutta method ; Splitting ; Time integration</subject><ispartof>arXiv.org, 2015-01</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Severiano Gonzalez Pinto</creatorcontrib><creatorcontrib>Domingo Hernandez Abreu</creatorcontrib><creatorcontrib>Soledad Perez Rodriguez</creatorcontrib><title>Error estimates for splitting methods based on AMF-Runge-Kutta formulas for the time integration of advection diffusion reaction PDEs</title><title>arXiv.org</title><description>The convergence of a family of AMF-Runge-Kutta methods (in short AMF-RK) for the time integration of evolutionary Partial Differential Equations (PDEs) of Advection Diffusion Reaction type semi-discretized in space is considered. The methods are based on very few inexact Newton Iterations of Aproximate Matrix Factorization splitting-type (AMF) applied to the Implicit Runge-Kutta formulas, which allows very cheap and inexact implementations of the underlying Runge-Kutta formula. Particular AMF-RK methods based on Radau IIA formulas are considered. These methods have given very competitive results when compared with important formulas in the literature for multidimensional systems of non-linear parabolic PDE problems. Uniform bounds for the global time-space errors on semi-linear PDEs when simultaneously the time step-size and the spatial grid resolution tend to zero are derived. Numerical illustrations supporting the theory are presented.</description><subject>Advection</subject><subject>Nonlinear systems</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><subject>Runge-Kutta method</subject><subject>Splitting</subject><subject>Time integration</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjl2KwjAQx4OwoLjeYcDnQkxXWx9FK4IsyLLvEu2kRtpEMxNv4L2NqwfYp5n_x2-YnhioPJ9k5ZdSfTEiOksp1axQ02k-EPcqBB8AiW2nGQlMUnRpLbN1DXTIJ18THDRhDd7B4nud_UTXYLaNzPpZ72KrXxyfENIdBOsYm6DZJsIb0PUNj3-itsZEem4B9cvarSr6FB9Gt4Sj9xyK8br6XW6yS_DXmJ7bn30MLkV7JctJIct5Mc__13oABJZS1A</recordid><startdate>20150112</startdate><enddate>20150112</enddate><creator>Severiano Gonzalez Pinto</creator><creator>Domingo Hernandez Abreu</creator><creator>Soledad Perez Rodriguez</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150112</creationdate><title>Error estimates for splitting methods based on AMF-Runge-Kutta formulas for the time integration of advection diffusion reaction PDEs</title><author>Severiano Gonzalez Pinto ; Domingo Hernandez Abreu ; Soledad Perez Rodriguez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20817089793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advection</topic><topic>Nonlinear systems</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><topic>Runge-Kutta method</topic><topic>Splitting</topic><topic>Time integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Severiano Gonzalez Pinto</creatorcontrib><creatorcontrib>Domingo Hernandez Abreu</creatorcontrib><creatorcontrib>Soledad Perez Rodriguez</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Severiano Gonzalez Pinto</au><au>Domingo Hernandez Abreu</au><au>Soledad Perez Rodriguez</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Error estimates for splitting methods based on AMF-Runge-Kutta formulas for the time integration of advection diffusion reaction PDEs</atitle><jtitle>arXiv.org</jtitle><date>2015-01-12</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>The convergence of a family of AMF-Runge-Kutta methods (in short AMF-RK) for the time integration of evolutionary Partial Differential Equations (PDEs) of Advection Diffusion Reaction type semi-discretized in space is considered. The methods are based on very few inexact Newton Iterations of Aproximate Matrix Factorization splitting-type (AMF) applied to the Implicit Runge-Kutta formulas, which allows very cheap and inexact implementations of the underlying Runge-Kutta formula. Particular AMF-RK methods based on Radau IIA formulas are considered. These methods have given very competitive results when compared with important formulas in the literature for multidimensional systems of non-linear parabolic PDE problems. Uniform bounds for the global time-space errors on semi-linear PDEs when simultaneously the time step-size and the spatial grid resolution tend to zero are derived. Numerical illustrations supporting the theory are presented.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081708979
source Free E- Journals
subjects Advection
Nonlinear systems
Parabolic differential equations
Partial differential equations
Runge-Kutta method
Splitting
Time integration
title Error estimates for splitting methods based on AMF-Runge-Kutta formulas for the time integration of advection diffusion reaction PDEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Error%20estimates%20for%20splitting%20methods%20based%20on%20AMF-Runge-Kutta%20formulas%20for%20the%20time%20integration%20of%20advection%20diffusion%20reaction%20PDEs&rft.jtitle=arXiv.org&rft.au=Severiano%20Gonzalez%20Pinto&rft.date=2015-01-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081708979%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081708979&rft_id=info:pmid/&rfr_iscdi=true