A Homotopy Method for Large-Scale Multi-Objective Optimization

A homotopy method for multi-objective optimization that produces uniformly sampled Pareto fronts by construction is presented. While the algorithm is general, of particular interest is application to simulation-based engineering optimization problems where economy of function evaluations, smoothness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-05
Hauptverfasser: Adelmann, Andreas, Arbenz, Peter, Foster, Andrew, Ineichen, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Adelmann, Andreas
Arbenz, Peter
Foster, Andrew
Ineichen, Yves
description A homotopy method for multi-objective optimization that produces uniformly sampled Pareto fronts by construction is presented. While the algorithm is general, of particular interest is application to simulation-based engineering optimization problems where economy of function evaluations, smoothness of result, and time-to-solution are critical. The presented algorithm achieves an order of magnitude improvement over other geometrically motivated methods, like Normal Boundary Intersection and Normal Constraint, with respect to solution evenness for similar computational expense. Furthermore, the resulting uniformity of solutions extends even to more difficult problems, such as those appearing in common Evolutionary Algorithm test cases.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081665024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081665024</sourcerecordid><originalsourceid>FETCH-proquest_journals_20816650243</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc1TwyM_NL8kvqFTwTS3JyE9RSMsvUvBJLEpP1Q1OTsxJVfAtzSnJ1PVPykpNLsksS1XwLyjJzM2sSizJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLQzMzUwMjE2PiVAEAegU36Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081665024</pqid></control><display><type>article</type><title>A Homotopy Method for Large-Scale Multi-Objective Optimization</title><source>Free E- Journals</source><creator>Adelmann, Andreas ; Arbenz, Peter ; Foster, Andrew ; Ineichen, Yves</creator><creatorcontrib>Adelmann, Andreas ; Arbenz, Peter ; Foster, Andrew ; Ineichen, Yves</creatorcontrib><description>A homotopy method for multi-objective optimization that produces uniformly sampled Pareto fronts by construction is presented. While the algorithm is general, of particular interest is application to simulation-based engineering optimization problems where economy of function evaluations, smoothness of result, and time-to-solution are critical. The presented algorithm achieves an order of magnitude improvement over other geometrically motivated methods, like Normal Boundary Intersection and Normal Constraint, with respect to solution evenness for similar computational expense. Furthermore, the resulting uniformity of solutions extends even to more difficult problems, such as those appearing in common Evolutionary Algorithm test cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer simulation ; Evolutionary algorithms ; Multiple objective analysis ; Pareto optimization ; Smoothness</subject><ispartof>arXiv.org, 2015-05</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Adelmann, Andreas</creatorcontrib><creatorcontrib>Arbenz, Peter</creatorcontrib><creatorcontrib>Foster, Andrew</creatorcontrib><creatorcontrib>Ineichen, Yves</creatorcontrib><title>A Homotopy Method for Large-Scale Multi-Objective Optimization</title><title>arXiv.org</title><description>A homotopy method for multi-objective optimization that produces uniformly sampled Pareto fronts by construction is presented. While the algorithm is general, of particular interest is application to simulation-based engineering optimization problems where economy of function evaluations, smoothness of result, and time-to-solution are critical. The presented algorithm achieves an order of magnitude improvement over other geometrically motivated methods, like Normal Boundary Intersection and Normal Constraint, with respect to solution evenness for similar computational expense. Furthermore, the resulting uniformity of solutions extends even to more difficult problems, such as those appearing in common Evolutionary Algorithm test cases.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Evolutionary algorithms</subject><subject>Multiple objective analysis</subject><subject>Pareto optimization</subject><subject>Smoothness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc1TwyM_NL8kvqFTwTS3JyE9RSMsvUvBJLEpP1Q1OTsxJVfAtzSnJ1PVPykpNLsksS1XwLyjJzM2sSizJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLQzMzUwMjE2PiVAEAegU36Q</recordid><startdate>20150512</startdate><enddate>20150512</enddate><creator>Adelmann, Andreas</creator><creator>Arbenz, Peter</creator><creator>Foster, Andrew</creator><creator>Ineichen, Yves</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150512</creationdate><title>A Homotopy Method for Large-Scale Multi-Objective Optimization</title><author>Adelmann, Andreas ; Arbenz, Peter ; Foster, Andrew ; Ineichen, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20816650243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Evolutionary algorithms</topic><topic>Multiple objective analysis</topic><topic>Pareto optimization</topic><topic>Smoothness</topic><toplevel>online_resources</toplevel><creatorcontrib>Adelmann, Andreas</creatorcontrib><creatorcontrib>Arbenz, Peter</creatorcontrib><creatorcontrib>Foster, Andrew</creatorcontrib><creatorcontrib>Ineichen, Yves</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adelmann, Andreas</au><au>Arbenz, Peter</au><au>Foster, Andrew</au><au>Ineichen, Yves</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Homotopy Method for Large-Scale Multi-Objective Optimization</atitle><jtitle>arXiv.org</jtitle><date>2015-05-12</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>A homotopy method for multi-objective optimization that produces uniformly sampled Pareto fronts by construction is presented. While the algorithm is general, of particular interest is application to simulation-based engineering optimization problems where economy of function evaluations, smoothness of result, and time-to-solution are critical. The presented algorithm achieves an order of magnitude improvement over other geometrically motivated methods, like Normal Boundary Intersection and Normal Constraint, with respect to solution evenness for similar computational expense. Furthermore, the resulting uniformity of solutions extends even to more difficult problems, such as those appearing in common Evolutionary Algorithm test cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081665024
source Free E- Journals
subjects Algorithms
Computer simulation
Evolutionary algorithms
Multiple objective analysis
Pareto optimization
Smoothness
title A Homotopy Method for Large-Scale Multi-Objective Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Homotopy%20Method%20for%20Large-Scale%20Multi-Objective%20Optimization&rft.jtitle=arXiv.org&rft.au=Adelmann,%20Andreas&rft.date=2015-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081665024%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081665024&rft_id=info:pmid/&rfr_iscdi=true