A Homotopy Method for Large-Scale Multi-Objective Optimization
A homotopy method for multi-objective optimization that produces uniformly sampled Pareto fronts by construction is presented. While the algorithm is general, of particular interest is application to simulation-based engineering optimization problems where economy of function evaluations, smoothness...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-05 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Adelmann, Andreas Arbenz, Peter Foster, Andrew Ineichen, Yves |
description | A homotopy method for multi-objective optimization that produces uniformly sampled Pareto fronts by construction is presented. While the algorithm is general, of particular interest is application to simulation-based engineering optimization problems where economy of function evaluations, smoothness of result, and time-to-solution are critical. The presented algorithm achieves an order of magnitude improvement over other geometrically motivated methods, like Normal Boundary Intersection and Normal Constraint, with respect to solution evenness for similar computational expense. Furthermore, the resulting uniformity of solutions extends even to more difficult problems, such as those appearing in common Evolutionary Algorithm test cases. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081665024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081665024</sourcerecordid><originalsourceid>FETCH-proquest_journals_20816650243</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc1TwyM_NL8kvqFTwTS3JyE9RSMsvUvBJLEpP1Q1OTsxJVfAtzSnJ1PVPykpNLsksS1XwLyjJzM2sSizJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLQzMzUwMjE2PiVAEAegU36Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081665024</pqid></control><display><type>article</type><title>A Homotopy Method for Large-Scale Multi-Objective Optimization</title><source>Free E- Journals</source><creator>Adelmann, Andreas ; Arbenz, Peter ; Foster, Andrew ; Ineichen, Yves</creator><creatorcontrib>Adelmann, Andreas ; Arbenz, Peter ; Foster, Andrew ; Ineichen, Yves</creatorcontrib><description>A homotopy method for multi-objective optimization that produces uniformly sampled Pareto fronts by construction is presented. While the algorithm is general, of particular interest is application to simulation-based engineering optimization problems where economy of function evaluations, smoothness of result, and time-to-solution are critical. The presented algorithm achieves an order of magnitude improvement over other geometrically motivated methods, like Normal Boundary Intersection and Normal Constraint, with respect to solution evenness for similar computational expense. Furthermore, the resulting uniformity of solutions extends even to more difficult problems, such as those appearing in common Evolutionary Algorithm test cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer simulation ; Evolutionary algorithms ; Multiple objective analysis ; Pareto optimization ; Smoothness</subject><ispartof>arXiv.org, 2015-05</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Adelmann, Andreas</creatorcontrib><creatorcontrib>Arbenz, Peter</creatorcontrib><creatorcontrib>Foster, Andrew</creatorcontrib><creatorcontrib>Ineichen, Yves</creatorcontrib><title>A Homotopy Method for Large-Scale Multi-Objective Optimization</title><title>arXiv.org</title><description>A homotopy method for multi-objective optimization that produces uniformly sampled Pareto fronts by construction is presented. While the algorithm is general, of particular interest is application to simulation-based engineering optimization problems where economy of function evaluations, smoothness of result, and time-to-solution are critical. The presented algorithm achieves an order of magnitude improvement over other geometrically motivated methods, like Normal Boundary Intersection and Normal Constraint, with respect to solution evenness for similar computational expense. Furthermore, the resulting uniformity of solutions extends even to more difficult problems, such as those appearing in common Evolutionary Algorithm test cases.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Evolutionary algorithms</subject><subject>Multiple objective analysis</subject><subject>Pareto optimization</subject><subject>Smoothness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc1TwyM_NL8kvqFTwTS3JyE9RSMsvUvBJLEpP1Q1OTsxJVfAtzSnJ1PVPykpNLsksS1XwLyjJzM2sSizJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLQzMzUwMjE2PiVAEAegU36Q</recordid><startdate>20150512</startdate><enddate>20150512</enddate><creator>Adelmann, Andreas</creator><creator>Arbenz, Peter</creator><creator>Foster, Andrew</creator><creator>Ineichen, Yves</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150512</creationdate><title>A Homotopy Method for Large-Scale Multi-Objective Optimization</title><author>Adelmann, Andreas ; Arbenz, Peter ; Foster, Andrew ; Ineichen, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20816650243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Evolutionary algorithms</topic><topic>Multiple objective analysis</topic><topic>Pareto optimization</topic><topic>Smoothness</topic><toplevel>online_resources</toplevel><creatorcontrib>Adelmann, Andreas</creatorcontrib><creatorcontrib>Arbenz, Peter</creatorcontrib><creatorcontrib>Foster, Andrew</creatorcontrib><creatorcontrib>Ineichen, Yves</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adelmann, Andreas</au><au>Arbenz, Peter</au><au>Foster, Andrew</au><au>Ineichen, Yves</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Homotopy Method for Large-Scale Multi-Objective Optimization</atitle><jtitle>arXiv.org</jtitle><date>2015-05-12</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>A homotopy method for multi-objective optimization that produces uniformly sampled Pareto fronts by construction is presented. While the algorithm is general, of particular interest is application to simulation-based engineering optimization problems where economy of function evaluations, smoothness of result, and time-to-solution are critical. The presented algorithm achieves an order of magnitude improvement over other geometrically motivated methods, like Normal Boundary Intersection and Normal Constraint, with respect to solution evenness for similar computational expense. Furthermore, the resulting uniformity of solutions extends even to more difficult problems, such as those appearing in common Evolutionary Algorithm test cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081665024 |
source | Free E- Journals |
subjects | Algorithms Computer simulation Evolutionary algorithms Multiple objective analysis Pareto optimization Smoothness |
title | A Homotopy Method for Large-Scale Multi-Objective Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Homotopy%20Method%20for%20Large-Scale%20Multi-Objective%20Optimization&rft.jtitle=arXiv.org&rft.au=Adelmann,%20Andreas&rft.date=2015-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081665024%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081665024&rft_id=info:pmid/&rfr_iscdi=true |