On Parametric Bootstrapping and Bayesian Prediction

We investigate bootstrapping and Bayesian methods for prediction. The observations and the variable being predicted are distributed according to different distributions. Many important problems can be formulated in this setting. This type of prediction problem appears when we deal with a Poisson pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2004-09, Vol.31 (3), p.403-416
Hauptverfasser: Fushiki, Tadayoshi, Komaki, Fumiyasu, Aihara, Kazuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 3
container_start_page 403
container_title Scandinavian journal of statistics
container_volume 31
creator Fushiki, Tadayoshi
Komaki, Fumiyasu
Aihara, Kazuyuki
description We investigate bootstrapping and Bayesian methods for prediction. The observations and the variable being predicted are distributed according to different distributions. Many important problems can be formulated in this setting. This type of prediction problem appears when we deal with a Poisson process. Regression problems can also be formulated in this setting. First, we show that bootstrap predictive distributions are equivalent to Bayesian predictive distributions in the second-order expansion when some conditions are satisfied. Next, the performance of predictive distributions is compared with that of a plug-in distribution with an estimator. The accuracy of prediction is evaluated by using the Kullback-Leibler divergence. Finally, we give some examples.
doi_str_mv 10.1111/j.1467-9469.2004.02_127.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_208164742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4616838</jstor_id><sourcerecordid>4616838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5637-32180cd44747aaa81313505d18ec2b4f2b72d9825e80b9b5b7c5b8f617c69f4f3</originalsourceid><addsrcrecordid>eNqNUMtu1DAUjRBIDIU_YDEgsUzwK35skJgKCqVlkFqE1M3VjeOAw0yS2inM_H2dpppua-naks_DxyfL3lBS0LTetwUVUuVGSFMwQkRBGFCmit2TbHFAnmYLwgnPpTb6efYixpYQKgXVi4yvu-UPDLh1Y_B2uer7MY4Bh8F3v5fY1csV7l30mFjB1d6Ovu9eZs8a3ET36v48yn5-_nR5_CU_W598Pf54lttScpVzRjWxtRBKKETUlFNekrKm2llWiYZVitVGs9JpUpmqrJQtK91Iqqw0jWj4UfZ29h1Cf33j4ghtfxO69CQwotMHlGCJZGaSDX2MwTUwBL_FsAdKYKoIWpiKgKkImCqCuSLYJe3prA1ucPYgrDYYbRtHhH_AkdO07dPcaTn66S7NkEYQDoJK-DNuk9m7-7RJjZsmYGd9fEgjU-dGy8T7MPP--43bPz4tXJyuL7hRyeD1bJAi9uFgICSVmusE5zPs4-h2BxjDX5CKqxJ-fT-Bbyt1dXm-OocrfgujY6qJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208164742</pqid></control><display><type>article</type><title>On Parametric Bootstrapping and Bayesian Prediction</title><source>JSTOR Mathematics and Statistics</source><source>RePEc</source><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><source>JSTOR</source><creator>Fushiki, Tadayoshi ; Komaki, Fumiyasu ; Aihara, Kazuyuki</creator><creatorcontrib>Fushiki, Tadayoshi ; Komaki, Fumiyasu ; Aihara, Kazuyuki</creatorcontrib><description>We investigate bootstrapping and Bayesian methods for prediction. The observations and the variable being predicted are distributed according to different distributions. Many important problems can be formulated in this setting. This type of prediction problem appears when we deal with a Poisson process. Regression problems can also be formulated in this setting. First, we show that bootstrap predictive distributions are equivalent to Bayesian predictive distributions in the second-order expansion when some conditions are satisfied. Next, the performance of predictive distributions is compared with that of a plug-in distribution with an estimator. The accuracy of prediction is evaluated by using the Kullback-Leibler divergence. Finally, we give some examples.</description><identifier>ISSN: 0303-6898</identifier><identifier>EISSN: 1467-9469</identifier><identifier>DOI: 10.1111/j.1467-9469.2004.02_127.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>asymptotic theory ; Bayes estimators ; Bayes theorem ; Bayesian analysis ; Bayesian prediction ; Binomial distributions ; Bootstrap method ; bootstrap predictive distribution ; Coefficients ; Exact sciences and technology ; Fisher information ; Indices of summation ; Inference from stochastic processes; time series analysis ; information geometry ; Kullback-Leibler divergence ; Mathematics ; Maximum likelihood estimation ; Modeling ; Parameter estimation ; Parametric inference ; Predictions ; Predictive modeling ; Probability and statistics ; Sciences and techniques of general use ; Statistical models ; Statistics</subject><ispartof>Scandinavian journal of statistics, 2004-09, Vol.31 (3), p.403-416</ispartof><rights>Copyright 2004 Board of the Foundation of the Scandinavian Journal of Statistics</rights><rights>2004 INIST-CNRS</rights><rights>2004 Board of the Foundation of the Scandinavian Journal of Statistics.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5637-32180cd44747aaa81313505d18ec2b4f2b72d9825e80b9b5b7c5b8f617c69f4f3</citedby><cites>FETCH-LOGICAL-c5637-32180cd44747aaa81313505d18ec2b4f2b72d9825e80b9b5b7c5b8f617c69f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4616838$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4616838$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,1418,4009,27929,27930,45579,45580,58022,58026,58255,58259</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16001986$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blascjsta/v_3a31_3ay_3a2004_3ai_3a3_3ap_3a403-416.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Fushiki, Tadayoshi</creatorcontrib><creatorcontrib>Komaki, Fumiyasu</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><title>On Parametric Bootstrapping and Bayesian Prediction</title><title>Scandinavian journal of statistics</title><description>We investigate bootstrapping and Bayesian methods for prediction. The observations and the variable being predicted are distributed according to different distributions. Many important problems can be formulated in this setting. This type of prediction problem appears when we deal with a Poisson process. Regression problems can also be formulated in this setting. First, we show that bootstrap predictive distributions are equivalent to Bayesian predictive distributions in the second-order expansion when some conditions are satisfied. Next, the performance of predictive distributions is compared with that of a plug-in distribution with an estimator. The accuracy of prediction is evaluated by using the Kullback-Leibler divergence. Finally, we give some examples.</description><subject>asymptotic theory</subject><subject>Bayes estimators</subject><subject>Bayes theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian prediction</subject><subject>Binomial distributions</subject><subject>Bootstrap method</subject><subject>bootstrap predictive distribution</subject><subject>Coefficients</subject><subject>Exact sciences and technology</subject><subject>Fisher information</subject><subject>Indices of summation</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>information geometry</subject><subject>Kullback-Leibler divergence</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Modeling</subject><subject>Parameter estimation</subject><subject>Parametric inference</subject><subject>Predictions</subject><subject>Predictive modeling</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistical models</subject><subject>Statistics</subject><issn>0303-6898</issn><issn>1467-9469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNUMtu1DAUjRBIDIU_YDEgsUzwK35skJgKCqVlkFqE1M3VjeOAw0yS2inM_H2dpppua-naks_DxyfL3lBS0LTetwUVUuVGSFMwQkRBGFCmit2TbHFAnmYLwgnPpTb6efYixpYQKgXVi4yvu-UPDLh1Y_B2uer7MY4Bh8F3v5fY1csV7l30mFjB1d6Ovu9eZs8a3ET36v48yn5-_nR5_CU_W598Pf54lttScpVzRjWxtRBKKETUlFNekrKm2llWiYZVitVGs9JpUpmqrJQtK91Iqqw0jWj4UfZ29h1Cf33j4ghtfxO69CQwotMHlGCJZGaSDX2MwTUwBL_FsAdKYKoIWpiKgKkImCqCuSLYJe3prA1ucPYgrDYYbRtHhH_AkdO07dPcaTn66S7NkEYQDoJK-DNuk9m7-7RJjZsmYGd9fEgjU-dGy8T7MPP--43bPz4tXJyuL7hRyeD1bJAi9uFgICSVmusE5zPs4-h2BxjDX5CKqxJ-fT-Bbyt1dXm-OocrfgujY6qJ</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Fushiki, Tadayoshi</creator><creator>Komaki, Fumiyasu</creator><creator>Aihara, Kazuyuki</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Danish Society for Theoretical Statistics</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200409</creationdate><title>On Parametric Bootstrapping and Bayesian Prediction</title><author>Fushiki, Tadayoshi ; Komaki, Fumiyasu ; Aihara, Kazuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5637-32180cd44747aaa81313505d18ec2b4f2b72d9825e80b9b5b7c5b8f617c69f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>asymptotic theory</topic><topic>Bayes estimators</topic><topic>Bayes theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian prediction</topic><topic>Binomial distributions</topic><topic>Bootstrap method</topic><topic>bootstrap predictive distribution</topic><topic>Coefficients</topic><topic>Exact sciences and technology</topic><topic>Fisher information</topic><topic>Indices of summation</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>information geometry</topic><topic>Kullback-Leibler divergence</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Modeling</topic><topic>Parameter estimation</topic><topic>Parametric inference</topic><topic>Predictions</topic><topic>Predictive modeling</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistical models</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fushiki, Tadayoshi</creatorcontrib><creatorcontrib>Komaki, Fumiyasu</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scandinavian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fushiki, Tadayoshi</au><au>Komaki, Fumiyasu</au><au>Aihara, Kazuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Parametric Bootstrapping and Bayesian Prediction</atitle><jtitle>Scandinavian journal of statistics</jtitle><date>2004-09</date><risdate>2004</risdate><volume>31</volume><issue>3</issue><spage>403</spage><epage>416</epage><pages>403-416</pages><issn>0303-6898</issn><eissn>1467-9469</eissn><abstract>We investigate bootstrapping and Bayesian methods for prediction. The observations and the variable being predicted are distributed according to different distributions. Many important problems can be formulated in this setting. This type of prediction problem appears when we deal with a Poisson process. Regression problems can also be formulated in this setting. First, we show that bootstrap predictive distributions are equivalent to Bayesian predictive distributions in the second-order expansion when some conditions are satisfied. Next, the performance of predictive distributions is compared with that of a plug-in distribution with an estimator. The accuracy of prediction is evaluated by using the Kullback-Leibler divergence. Finally, we give some examples.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9469.2004.02_127.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-6898
ispartof Scandinavian journal of statistics, 2004-09, Vol.31 (3), p.403-416
issn 0303-6898
1467-9469
language eng
recordid cdi_proquest_journals_208164742
source JSTOR Mathematics and Statistics; RePEc; Business Source Complete; Wiley Online Library All Journals; JSTOR
subjects asymptotic theory
Bayes estimators
Bayes theorem
Bayesian analysis
Bayesian prediction
Binomial distributions
Bootstrap method
bootstrap predictive distribution
Coefficients
Exact sciences and technology
Fisher information
Indices of summation
Inference from stochastic processes
time series analysis
information geometry
Kullback-Leibler divergence
Mathematics
Maximum likelihood estimation
Modeling
Parameter estimation
Parametric inference
Predictions
Predictive modeling
Probability and statistics
Sciences and techniques of general use
Statistical models
Statistics
title On Parametric Bootstrapping and Bayesian Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Parametric%20Bootstrapping%20and%20Bayesian%20Prediction&rft.jtitle=Scandinavian%20journal%20of%20statistics&rft.au=Fushiki,%20Tadayoshi&rft.date=2004-09&rft.volume=31&rft.issue=3&rft.spage=403&rft.epage=416&rft.pages=403-416&rft.issn=0303-6898&rft.eissn=1467-9469&rft_id=info:doi/10.1111/j.1467-9469.2004.02_127.x&rft_dat=%3Cjstor_proqu%3E4616838%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208164742&rft_id=info:pmid/&rft_jstor_id=4616838&rfr_iscdi=true