Maximum Likelihood Estimation in Gaussian Chain Graph Models under the Alternative Markov Property

The Andersson-Madigan-Perlman (AMP) Markov property is a recently proposed alternative Markov property (AMP) for chain graphs. In the case of continuous variables with a joint multivariate Gaussian distribution, it is the AMP rather than the earlier introduced Lauritzen-Wermuth-Frydenberg Markov pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2006-06, Vol.33 (2), p.247-257
Hauptverfasser: DRTON, MATHIAS, EICHLER, MICHAEL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Andersson-Madigan-Perlman (AMP) Markov property is a recently proposed alternative Markov property (AMP) for chain graphs. In the case of continuous variables with a joint multivariate Gaussian distribution, it is the AMP rather than the earlier introduced Lauritzen-Wermuth-Frydenberg Markov property that is coherent with data-generation by natural block-recursive regressions. In this paper, we show that maximum likelihood estimates in Gaussian AMP chain graph models can be obtained by combining generalized least squares and iterative proportional fitting to an iterative algorithm. In an appendix, we give useful convergence results for iterative partial maximization algorithms that apply in particular to the described algorithm.
ISSN:0303-6898
1467-9469
DOI:10.1111/j.1467-9469.2006.00482.x