Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties

The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied. It is found that ion irradiation leads to the formation of nano-sized pores, or antidots, with sizes ranging from 20 to 60 nm, in the upper one or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-08, Vol.1 (3), p.14499-1459
Hauptverfasser: Nebogatikova, N. A, Antonova, I. V, Erohin, S. V, Kvashnin, D. G, Olejniczak, A, Volodin, V. A, Skuratov, A. V, Krasheninnikov, A. V, Sorokin, P. B, Chernozatonskii, L. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1459
container_issue 3
container_start_page 14499
container_title Nanoscale
container_volume 1
creator Nebogatikova, N. A
Antonova, I. V
Erohin, S. V
Kvashnin, D. G
Olejniczak, A
Volodin, V. A
Skuratov, A. V
Krasheninnikov, A. V
Sorokin, P. B
Chernozatonskii, L. A
description The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied. It is found that ion irradiation leads to the formation of nano-sized pores, or antidots, with sizes ranging from 20 to 60 nm, in the upper one or two layers. The sizes of the pores proved to be roughly independent of the energy of the ions, whereas the areal density of the pores increased with the ion dose. With increasing ion energy (>70 MeV), a profound reduction in the concentration of structural defects (by a factor of 2-5), relatively high mobility values of charge carriers (700-1200 cm 2 V −1 s −1 ) and a transport band gap of about 50 meV were observed in the nanostructured films. The experimental data were rationalized through atomistic simulations of ion impact onto few-layer graphene structures with a thickness matching the experimental samples. We showed that even a single Xe atom with energy in the experimental range produces a considerable amount of damage in the graphene lattice, whereas high dose ion irradiation allows one to propose a high probability of consecutive impacts of several ions onto an area already amorphized by the previous ions, which increases the average radius of the pore to match the experimental results. We also found that the formation of "welded" sheets due to interlayer covalent bonds at the edges and, hence, defect-free antidot arrays is likely at high ion energies (above 70 MeV). The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied.
doi_str_mv 10.1039/c8nr03062f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2081643209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081643209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-64379de1339aa9530de22c413286cd359449f38dd94939e5d86279d6041564bb3</originalsourceid><addsrcrecordid>eNpd0d9rHCEQB3ApLc2vvuQ9RchLKWziquutfQtHkxZCAqF9Xjx3zBn2dDu6Pe4_yJ9dk0svtE8K83Gc4UvIcc3Oaib0uW0DMsEUd2_IPmeSVULM-NvdXck9cpDSA2NKCyXekz3BGJeMNfvk8caEmDJONk_owz11sK4GswGk92jGJQSgzg-rRNc-L2lae5fpEszvDfUxJOoiUhjAZozBW2rGcfDW5FL7QvMUnjpG948IPc1oQhojZjpiHAGzh3RE3jkzJPjwch6Sn5dff8y_Vde3V9_nF9eVLUvlSkkx0z3UQmhjdCNYD5xbWQveKtuLRkupnWj7XkstNDR9q3h5oJisGyUXC3FIPm37lq9_TZByt_LJwjCYAHFKHWczXmuum1mhp__RhzhhKNMV1dZlFM50UZ-3ymJMCcF1I_qVwU1Xs-4pn27e3tw953NZ8MeXltNiBf2O_g2kgJMtwGR31deAxR9wZ5ZF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081643209</pqid></control><display><type>article</type><title>Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties</title><source>Royal Society Of Chemistry Journals</source><creator>Nebogatikova, N. A ; Antonova, I. V ; Erohin, S. V ; Kvashnin, D. G ; Olejniczak, A ; Volodin, V. A ; Skuratov, A. V ; Krasheninnikov, A. V ; Sorokin, P. B ; Chernozatonskii, L. A</creator><creatorcontrib>Nebogatikova, N. A ; Antonova, I. V ; Erohin, S. V ; Kvashnin, D. G ; Olejniczak, A ; Volodin, V. A ; Skuratov, A. V ; Krasheninnikov, A. V ; Sorokin, P. B ; Chernozatonskii, L. A</creatorcontrib><description>The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied. It is found that ion irradiation leads to the formation of nano-sized pores, or antidots, with sizes ranging from 20 to 60 nm, in the upper one or two layers. The sizes of the pores proved to be roughly independent of the energy of the ions, whereas the areal density of the pores increased with the ion dose. With increasing ion energy (&gt;70 MeV), a profound reduction in the concentration of structural defects (by a factor of 2-5), relatively high mobility values of charge carriers (700-1200 cm 2 V −1 s −1 ) and a transport band gap of about 50 meV were observed in the nanostructured films. The experimental data were rationalized through atomistic simulations of ion impact onto few-layer graphene structures with a thickness matching the experimental samples. We showed that even a single Xe atom with energy in the experimental range produces a considerable amount of damage in the graphene lattice, whereas high dose ion irradiation allows one to propose a high probability of consecutive impacts of several ions onto an area already amorphized by the previous ions, which increases the average radius of the pore to match the experimental results. We also found that the formation of "welded" sheets due to interlayer covalent bonds at the edges and, hence, defect-free antidot arrays is likely at high ion energies (above 70 MeV). The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr03062f</identifier><identifier>PMID: 30024005</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Amorphization ; Antidots ; Covalent bonds ; Current carriers ; Graphene ; Heavy ions ; Interlayers ; Ion impact ; Ion irradiation ; Morphology ; Nanostructure ; Porosity ; Radiation damage ; Radiation dosage ; Thickness ; Transport properties</subject><ispartof>Nanoscale, 2018-08, Vol.1 (3), p.14499-1459</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-64379de1339aa9530de22c413286cd359449f38dd94939e5d86279d6041564bb3</citedby><cites>FETCH-LOGICAL-c337t-64379de1339aa9530de22c413286cd359449f38dd94939e5d86279d6041564bb3</cites><orcidid>0000-0002-6835-2737 ; 0000-0002-5917-9709 ; 0000-0002-1431-8242 ; 0000-0003-3320-6657 ; 0000-0001-5248-1799 ; 0000-0002-9016-8370 ; 0000-0003-0074-7588 ; 0000-0003-2158-6808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30024005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nebogatikova, N. A</creatorcontrib><creatorcontrib>Antonova, I. V</creatorcontrib><creatorcontrib>Erohin, S. V</creatorcontrib><creatorcontrib>Kvashnin, D. G</creatorcontrib><creatorcontrib>Olejniczak, A</creatorcontrib><creatorcontrib>Volodin, V. A</creatorcontrib><creatorcontrib>Skuratov, A. V</creatorcontrib><creatorcontrib>Krasheninnikov, A. V</creatorcontrib><creatorcontrib>Sorokin, P. B</creatorcontrib><creatorcontrib>Chernozatonskii, L. A</creatorcontrib><title>Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied. It is found that ion irradiation leads to the formation of nano-sized pores, or antidots, with sizes ranging from 20 to 60 nm, in the upper one or two layers. The sizes of the pores proved to be roughly independent of the energy of the ions, whereas the areal density of the pores increased with the ion dose. With increasing ion energy (&gt;70 MeV), a profound reduction in the concentration of structural defects (by a factor of 2-5), relatively high mobility values of charge carriers (700-1200 cm 2 V −1 s −1 ) and a transport band gap of about 50 meV were observed in the nanostructured films. The experimental data were rationalized through atomistic simulations of ion impact onto few-layer graphene structures with a thickness matching the experimental samples. We showed that even a single Xe atom with energy in the experimental range produces a considerable amount of damage in the graphene lattice, whereas high dose ion irradiation allows one to propose a high probability of consecutive impacts of several ions onto an area already amorphized by the previous ions, which increases the average radius of the pore to match the experimental results. We also found that the formation of "welded" sheets due to interlayer covalent bonds at the edges and, hence, defect-free antidot arrays is likely at high ion energies (above 70 MeV). The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied.</description><subject>Amorphization</subject><subject>Antidots</subject><subject>Covalent bonds</subject><subject>Current carriers</subject><subject>Graphene</subject><subject>Heavy ions</subject><subject>Interlayers</subject><subject>Ion impact</subject><subject>Ion irradiation</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Porosity</subject><subject>Radiation damage</subject><subject>Radiation dosage</subject><subject>Thickness</subject><subject>Transport properties</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0d9rHCEQB3ApLc2vvuQ9RchLKWziquutfQtHkxZCAqF9Xjx3zBn2dDu6Pe4_yJ9dk0svtE8K83Gc4UvIcc3Oaib0uW0DMsEUd2_IPmeSVULM-NvdXck9cpDSA2NKCyXekz3BGJeMNfvk8caEmDJONk_owz11sK4GswGk92jGJQSgzg-rRNc-L2lae5fpEszvDfUxJOoiUhjAZozBW2rGcfDW5FL7QvMUnjpG948IPc1oQhojZjpiHAGzh3RE3jkzJPjwch6Sn5dff8y_Vde3V9_nF9eVLUvlSkkx0z3UQmhjdCNYD5xbWQveKtuLRkupnWj7XkstNDR9q3h5oJisGyUXC3FIPm37lq9_TZByt_LJwjCYAHFKHWczXmuum1mhp__RhzhhKNMV1dZlFM50UZ-3ymJMCcF1I_qVwU1Xs-4pn27e3tw953NZ8MeXltNiBf2O_g2kgJMtwGR31deAxR9wZ5ZF</recordid><startdate>20180802</startdate><enddate>20180802</enddate><creator>Nebogatikova, N. A</creator><creator>Antonova, I. V</creator><creator>Erohin, S. V</creator><creator>Kvashnin, D. G</creator><creator>Olejniczak, A</creator><creator>Volodin, V. A</creator><creator>Skuratov, A. V</creator><creator>Krasheninnikov, A. V</creator><creator>Sorokin, P. B</creator><creator>Chernozatonskii, L. A</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6835-2737</orcidid><orcidid>https://orcid.org/0000-0002-5917-9709</orcidid><orcidid>https://orcid.org/0000-0002-1431-8242</orcidid><orcidid>https://orcid.org/0000-0003-3320-6657</orcidid><orcidid>https://orcid.org/0000-0001-5248-1799</orcidid><orcidid>https://orcid.org/0000-0002-9016-8370</orcidid><orcidid>https://orcid.org/0000-0003-0074-7588</orcidid><orcidid>https://orcid.org/0000-0003-2158-6808</orcidid></search><sort><creationdate>20180802</creationdate><title>Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties</title><author>Nebogatikova, N. A ; Antonova, I. V ; Erohin, S. V ; Kvashnin, D. G ; Olejniczak, A ; Volodin, V. A ; Skuratov, A. V ; Krasheninnikov, A. V ; Sorokin, P. B ; Chernozatonskii, L. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-64379de1339aa9530de22c413286cd359449f38dd94939e5d86279d6041564bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amorphization</topic><topic>Antidots</topic><topic>Covalent bonds</topic><topic>Current carriers</topic><topic>Graphene</topic><topic>Heavy ions</topic><topic>Interlayers</topic><topic>Ion impact</topic><topic>Ion irradiation</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Porosity</topic><topic>Radiation damage</topic><topic>Radiation dosage</topic><topic>Thickness</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nebogatikova, N. A</creatorcontrib><creatorcontrib>Antonova, I. V</creatorcontrib><creatorcontrib>Erohin, S. V</creatorcontrib><creatorcontrib>Kvashnin, D. G</creatorcontrib><creatorcontrib>Olejniczak, A</creatorcontrib><creatorcontrib>Volodin, V. A</creatorcontrib><creatorcontrib>Skuratov, A. V</creatorcontrib><creatorcontrib>Krasheninnikov, A. V</creatorcontrib><creatorcontrib>Sorokin, P. B</creatorcontrib><creatorcontrib>Chernozatonskii, L. A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nebogatikova, N. A</au><au>Antonova, I. V</au><au>Erohin, S. V</au><au>Kvashnin, D. G</au><au>Olejniczak, A</au><au>Volodin, V. A</au><au>Skuratov, A. V</au><au>Krasheninnikov, A. V</au><au>Sorokin, P. B</au><au>Chernozatonskii, L. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-08-02</date><risdate>2018</risdate><volume>1</volume><issue>3</issue><spage>14499</spage><epage>1459</epage><pages>14499-1459</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied. It is found that ion irradiation leads to the formation of nano-sized pores, or antidots, with sizes ranging from 20 to 60 nm, in the upper one or two layers. The sizes of the pores proved to be roughly independent of the energy of the ions, whereas the areal density of the pores increased with the ion dose. With increasing ion energy (&gt;70 MeV), a profound reduction in the concentration of structural defects (by a factor of 2-5), relatively high mobility values of charge carriers (700-1200 cm 2 V −1 s −1 ) and a transport band gap of about 50 meV were observed in the nanostructured films. The experimental data were rationalized through atomistic simulations of ion impact onto few-layer graphene structures with a thickness matching the experimental samples. We showed that even a single Xe atom with energy in the experimental range produces a considerable amount of damage in the graphene lattice, whereas high dose ion irradiation allows one to propose a high probability of consecutive impacts of several ions onto an area already amorphized by the previous ions, which increases the average radius of the pore to match the experimental results. We also found that the formation of "welded" sheets due to interlayer covalent bonds at the edges and, hence, defect-free antidot arrays is likely at high ion energies (above 70 MeV). The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30024005</pmid><doi>10.1039/c8nr03062f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6835-2737</orcidid><orcidid>https://orcid.org/0000-0002-5917-9709</orcidid><orcidid>https://orcid.org/0000-0002-1431-8242</orcidid><orcidid>https://orcid.org/0000-0003-3320-6657</orcidid><orcidid>https://orcid.org/0000-0001-5248-1799</orcidid><orcidid>https://orcid.org/0000-0002-9016-8370</orcidid><orcidid>https://orcid.org/0000-0003-0074-7588</orcidid><orcidid>https://orcid.org/0000-0003-2158-6808</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-08, Vol.1 (3), p.14499-1459
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2081643209
source Royal Society Of Chemistry Journals
subjects Amorphization
Antidots
Covalent bonds
Current carriers
Graphene
Heavy ions
Interlayers
Ion impact
Ion irradiation
Morphology
Nanostructure
Porosity
Radiation damage
Radiation dosage
Thickness
Transport properties
title Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructuring%20few-layer%20graphene%20films%20with%20swift%20heavy%20ions%20for%20electronic%20application:%20tuning%20of%20electronic%20and%20transport%20properties&rft.jtitle=Nanoscale&rft.au=Nebogatikova,%20N.%20A&rft.date=2018-08-02&rft.volume=1&rft.issue=3&rft.spage=14499&rft.epage=1459&rft.pages=14499-1459&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr03062f&rft_dat=%3Cproquest_pubme%3E2081643209%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081643209&rft_id=info:pmid/30024005&rfr_iscdi=true