Regular graphs are antimagic
An undirected simple graph \(G=(V,E)\) is called antimagic if there exists an injective function \(f:E\rightarrow\{1,\dots,|E|\}\) such that \(\sum_{e\in E(u)} f(e)\neq\sum_{e\in E(v)} f(e)\) for any pair of different nodes \(u,v\in V\). In a previous version of the paper, the authors gave a proof t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bérczi, Kristóf Bernáth, Attila Máté Vizer |
description | An undirected simple graph \(G=(V,E)\) is called antimagic if there exists an injective function \(f:E\rightarrow\{1,\dots,|E|\}\) such that \(\sum_{e\in E(u)} f(e)\neq\sum_{e\in E(v)} f(e)\) for any pair of different nodes \(u,v\in V\). In a previous version of the paper, the authors gave a proof that regular graphs are antimagic. However, the proof of the main theorem is incorrect as one of the steps uses an invalid assumption. The aim of the present erratum is to fix the proof. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081626841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081626841</sourcerecordid><originalsourceid>FETCH-proquest_journals_20816268413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQCUpNL81JLFJIL0osyChWSCxKVUjMK8nMTUzPTOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtDMyMzCxNDY-JUAQAk8CuJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081626841</pqid></control><display><type>article</type><title>Regular graphs are antimagic</title><source>Free E- Journals</source><creator>Bérczi, Kristóf ; Bernáth, Attila ; Máté Vizer</creator><creatorcontrib>Bérczi, Kristóf ; Bernáth, Attila ; Máté Vizer</creatorcontrib><description>An undirected simple graph \(G=(V,E)\) is called antimagic if there exists an injective function \(f:E\rightarrow\{1,\dots,|E|\}\) such that \(\sum_{e\in E(u)} f(e)\neq\sum_{e\in E(v)} f(e)\) for any pair of different nodes \(u,v\in V\). In a previous version of the paper, the authors gave a proof that regular graphs are antimagic. However, the proof of the main theorem is incorrect as one of the steps uses an invalid assumption. The aim of the present erratum is to fix the proof.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graphs</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bérczi, Kristóf</creatorcontrib><creatorcontrib>Bernáth, Attila</creatorcontrib><creatorcontrib>Máté Vizer</creatorcontrib><title>Regular graphs are antimagic</title><title>arXiv.org</title><description>An undirected simple graph \(G=(V,E)\) is called antimagic if there exists an injective function \(f:E\rightarrow\{1,\dots,|E|\}\) such that \(\sum_{e\in E(u)} f(e)\neq\sum_{e\in E(v)} f(e)\) for any pair of different nodes \(u,v\in V\). In a previous version of the paper, the authors gave a proof that regular graphs are antimagic. However, the proof of the main theorem is incorrect as one of the steps uses an invalid assumption. The aim of the present erratum is to fix the proof.</description><subject>Graphs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQCUpNL81JLFJIL0osyChWSCxKVUjMK8nMTUzPTOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtDMyMzCxNDY-JUAQAk8CuJ</recordid><startdate>20190109</startdate><enddate>20190109</enddate><creator>Bérczi, Kristóf</creator><creator>Bernáth, Attila</creator><creator>Máté Vizer</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190109</creationdate><title>Regular graphs are antimagic</title><author>Bérczi, Kristóf ; Bernáth, Attila ; Máté Vizer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20816268413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Bérczi, Kristóf</creatorcontrib><creatorcontrib>Bernáth, Attila</creatorcontrib><creatorcontrib>Máté Vizer</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bérczi, Kristóf</au><au>Bernáth, Attila</au><au>Máté Vizer</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Regular graphs are antimagic</atitle><jtitle>arXiv.org</jtitle><date>2019-01-09</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>An undirected simple graph \(G=(V,E)\) is called antimagic if there exists an injective function \(f:E\rightarrow\{1,\dots,|E|\}\) such that \(\sum_{e\in E(u)} f(e)\neq\sum_{e\in E(v)} f(e)\) for any pair of different nodes \(u,v\in V\). In a previous version of the paper, the authors gave a proof that regular graphs are antimagic. However, the proof of the main theorem is incorrect as one of the steps uses an invalid assumption. The aim of the present erratum is to fix the proof.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081626841 |
source | Free E- Journals |
subjects | Graphs |
title | Regular graphs are antimagic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Regular%20graphs%20are%20antimagic&rft.jtitle=arXiv.org&rft.au=B%C3%A9rczi,%20Krist%C3%B3f&rft.date=2019-01-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081626841%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081626841&rft_id=info:pmid/&rfr_iscdi=true |