Small subset sums
Let ||.|| be a norm in R^d whose unit ball is B. Assume that V\subset B is a finite set of cardinality n, with \sum_{v \in V} v=0. We show that for every integer k with 0 \le k \le n, there exists a subset U of V consisting of k elements such that \| \sum_{v \in U} v \| \le \lceil d/2 \rceil. We als...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ambrus, Gergely Barany, Imre Grinberg, Victor |
description | Let ||.|| be a norm in R^d whose unit ball is B. Assume that V\subset B is a finite set of cardinality n, with \sum_{v \in V} v=0. We show that for every integer k with 0 \le k \le n, there exists a subset U of V consisting of k elements such that \| \sum_{v \in U} v \| \le \lceil d/2 \rceil. We also prove that this bound is sharp in general. We improve the estimate to O(\sqrt d) for the Euclidean and the max norms. An application on vector sums in the plane is also given. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081619312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081619312</sourcerecordid><originalsourceid>FETCH-proquest_journals_20816193123</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQQDM5NzMlRKC5NKk4tAVK5xTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kYGFoZmhpbGhkTJwqABOmJ28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081619312</pqid></control><display><type>article</type><title>Small subset sums</title><source>Free E- Journals</source><creator>Ambrus, Gergely ; Barany, Imre ; Grinberg, Victor</creator><creatorcontrib>Ambrus, Gergely ; Barany, Imre ; Grinberg, Victor</creatorcontrib><description>Let ||.|| be a norm in R^d whose unit ball is B. Assume that V\subset B is a finite set of cardinality n, with \sum_{v \in V} v=0. We show that for every integer k with 0 \le k \le n, there exists a subset U of V consisting of k elements such that \| \sum_{v \in U} v \| \le \lceil d/2 \rceil. We also prove that this bound is sharp in general. We improve the estimate to O(\sqrt d) for the Euclidean and the max norms. An application on vector sums in the plane is also given.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Norms ; Sums</subject><ispartof>arXiv.org, 2020-12</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ambrus, Gergely</creatorcontrib><creatorcontrib>Barany, Imre</creatorcontrib><creatorcontrib>Grinberg, Victor</creatorcontrib><title>Small subset sums</title><title>arXiv.org</title><description>Let ||.|| be a norm in R^d whose unit ball is B. Assume that V\subset B is a finite set of cardinality n, with \sum_{v \in V} v=0. We show that for every integer k with 0 \le k \le n, there exists a subset U of V consisting of k elements such that \| \sum_{v \in U} v \| \le \lceil d/2 \rceil. We also prove that this bound is sharp in general. We improve the estimate to O(\sqrt d) for the Euclidean and the max norms. An application on vector sums in the plane is also given.</description><subject>Norms</subject><subject>Sums</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQQDM5NzMlRKC5NKk4tAVK5xTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kYGFoZmhpbGhkTJwqABOmJ28</recordid><startdate>20201203</startdate><enddate>20201203</enddate><creator>Ambrus, Gergely</creator><creator>Barany, Imre</creator><creator>Grinberg, Victor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201203</creationdate><title>Small subset sums</title><author>Ambrus, Gergely ; Barany, Imre ; Grinberg, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20816193123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Norms</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>Ambrus, Gergely</creatorcontrib><creatorcontrib>Barany, Imre</creatorcontrib><creatorcontrib>Grinberg, Victor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrus, Gergely</au><au>Barany, Imre</au><au>Grinberg, Victor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Small subset sums</atitle><jtitle>arXiv.org</jtitle><date>2020-12-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Let ||.|| be a norm in R^d whose unit ball is B. Assume that V\subset B is a finite set of cardinality n, with \sum_{v \in V} v=0. We show that for every integer k with 0 \le k \le n, there exists a subset U of V consisting of k elements such that \| \sum_{v \in U} v \| \le \lceil d/2 \rceil. We also prove that this bound is sharp in general. We improve the estimate to O(\sqrt d) for the Euclidean and the max norms. An application on vector sums in the plane is also given.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081619312 |
source | Free E- Journals |
subjects | Norms Sums |
title | Small subset sums |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Small%20subset%20sums&rft.jtitle=arXiv.org&rft.au=Ambrus,%20Gergely&rft.date=2020-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081619312%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081619312&rft_id=info:pmid/&rfr_iscdi=true |