Small subset sums

Let ||.|| be a norm in R^d whose unit ball is B. Assume that V\subset B is a finite set of cardinality n, with \sum_{v \in V} v=0. We show that for every integer k with 0 \le k \le n, there exists a subset U of V consisting of k elements such that \| \sum_{v \in U} v \| \le \lceil d/2 \rceil. We als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-12
Hauptverfasser: Ambrus, Gergely, Barany, Imre, Grinberg, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ambrus, Gergely
Barany, Imre
Grinberg, Victor
description Let ||.|| be a norm in R^d whose unit ball is B. Assume that V\subset B is a finite set of cardinality n, with \sum_{v \in V} v=0. We show that for every integer k with 0 \le k \le n, there exists a subset U of V consisting of k elements such that \| \sum_{v \in U} v \| \le \lceil d/2 \rceil. We also prove that this bound is sharp in general. We improve the estimate to O(\sqrt d) for the Euclidean and the max norms. An application on vector sums in the plane is also given.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081619312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081619312</sourcerecordid><originalsourceid>FETCH-proquest_journals_20816193123</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQQDM5NzMlRKC5NKk4tAVK5xTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kYGFoZmhpbGhkTJwqABOmJ28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081619312</pqid></control><display><type>article</type><title>Small subset sums</title><source>Free E- Journals</source><creator>Ambrus, Gergely ; Barany, Imre ; Grinberg, Victor</creator><creatorcontrib>Ambrus, Gergely ; Barany, Imre ; Grinberg, Victor</creatorcontrib><description>Let ||.|| be a norm in R^d whose unit ball is B. Assume that V\subset B is a finite set of cardinality n, with \sum_{v \in V} v=0. We show that for every integer k with 0 \le k \le n, there exists a subset U of V consisting of k elements such that \| \sum_{v \in U} v \| \le \lceil d/2 \rceil. We also prove that this bound is sharp in general. We improve the estimate to O(\sqrt d) for the Euclidean and the max norms. An application on vector sums in the plane is also given.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Norms ; Sums</subject><ispartof>arXiv.org, 2020-12</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ambrus, Gergely</creatorcontrib><creatorcontrib>Barany, Imre</creatorcontrib><creatorcontrib>Grinberg, Victor</creatorcontrib><title>Small subset sums</title><title>arXiv.org</title><description>Let ||.|| be a norm in R^d whose unit ball is B. Assume that V\subset B is a finite set of cardinality n, with \sum_{v \in V} v=0. We show that for every integer k with 0 \le k \le n, there exists a subset U of V consisting of k elements such that \| \sum_{v \in U} v \| \le \lceil d/2 \rceil. We also prove that this bound is sharp in general. We improve the estimate to O(\sqrt d) for the Euclidean and the max norms. An application on vector sums in the plane is also given.</description><subject>Norms</subject><subject>Sums</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQQDM5NzMlRKC5NKk4tAVK5xTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kYGFoZmhpbGhkTJwqABOmJ28</recordid><startdate>20201203</startdate><enddate>20201203</enddate><creator>Ambrus, Gergely</creator><creator>Barany, Imre</creator><creator>Grinberg, Victor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201203</creationdate><title>Small subset sums</title><author>Ambrus, Gergely ; Barany, Imre ; Grinberg, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20816193123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Norms</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>Ambrus, Gergely</creatorcontrib><creatorcontrib>Barany, Imre</creatorcontrib><creatorcontrib>Grinberg, Victor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrus, Gergely</au><au>Barany, Imre</au><au>Grinberg, Victor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Small subset sums</atitle><jtitle>arXiv.org</jtitle><date>2020-12-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Let ||.|| be a norm in R^d whose unit ball is B. Assume that V\subset B is a finite set of cardinality n, with \sum_{v \in V} v=0. We show that for every integer k with 0 \le k \le n, there exists a subset U of V consisting of k elements such that \| \sum_{v \in U} v \| \le \lceil d/2 \rceil. We also prove that this bound is sharp in general. We improve the estimate to O(\sqrt d) for the Euclidean and the max norms. An application on vector sums in the plane is also given.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081619312
source Free E- Journals
subjects Norms
Sums
title Small subset sums
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Small%20subset%20sums&rft.jtitle=arXiv.org&rft.au=Ambrus,%20Gergely&rft.date=2020-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081619312%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081619312&rft_id=info:pmid/&rfr_iscdi=true