Liquidation of an indivisible asset with independent investment

We provide an extension of the explicit solution of a mixed optimal stopping-optimal stochastic control problem introduced by Henderson and Hobson. The problem examines wether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-02
Hauptverfasser: Fabre, Emilie, Royer, Guillaume, Touzi, Nizar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fabre, Emilie
Royer, Guillaume
Touzi, Nizar
description We provide an extension of the explicit solution of a mixed optimal stopping-optimal stochastic control problem introduced by Henderson and Hobson. The problem examines wether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independent indivisible asset. The indivisible asset process is defined by a homogeneous scalar stochastic differential equation, and the investor's preferences are defined by a general expected utility function. The value function is obtained in explicit form, and we prove the existence of an optimal stopping-investment strategy characterized as the limit of an explicit maximizing strategy. Our approach is based on the standard dynamic programming approach.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081571086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081571086</sourcerecordid><originalsourceid>FETCH-proquest_journals_20815710863</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw98ksLM1MSSzJzM9TyE9TSMxTyMxLySzLLM5MyklVSCwuTi1RKM8syQAJpxakAom8EiC7LLW4JBfI5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpUBF8Vn5pUV5QKl4IwMLQ1NzQwMLM2PiVAEAR2M5YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081571086</pqid></control><display><type>article</type><title>Liquidation of an indivisible asset with independent investment</title><source>Free E- Journals</source><creator>Fabre, Emilie ; Royer, Guillaume ; Touzi, Nizar</creator><creatorcontrib>Fabre, Emilie ; Royer, Guillaume ; Touzi, Nizar</creatorcontrib><description>We provide an extension of the explicit solution of a mixed optimal stopping-optimal stochastic control problem introduced by Henderson and Hobson. The problem examines wether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independent indivisible asset. The indivisible asset process is defined by a homogeneous scalar stochastic differential equation, and the investor's preferences are defined by a general expected utility function. The value function is obtained in explicit form, and we prove the existence of an optimal stopping-investment strategy characterized as the limit of an explicit maximizing strategy. Our approach is based on the standard dynamic programming approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Dynamic programming ; Economic models ; Expected utility ; Investment policy ; Investment strategy ; Martingales ; Optimal control ; Optimization ; Stochastic processes</subject><ispartof>arXiv.org, 2015-02</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fabre, Emilie</creatorcontrib><creatorcontrib>Royer, Guillaume</creatorcontrib><creatorcontrib>Touzi, Nizar</creatorcontrib><title>Liquidation of an indivisible asset with independent investment</title><title>arXiv.org</title><description>We provide an extension of the explicit solution of a mixed optimal stopping-optimal stochastic control problem introduced by Henderson and Hobson. The problem examines wether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independent indivisible asset. The indivisible asset process is defined by a homogeneous scalar stochastic differential equation, and the investor's preferences are defined by a general expected utility function. The value function is obtained in explicit form, and we prove the existence of an optimal stopping-investment strategy characterized as the limit of an explicit maximizing strategy. Our approach is based on the standard dynamic programming approach.</description><subject>Differential equations</subject><subject>Dynamic programming</subject><subject>Economic models</subject><subject>Expected utility</subject><subject>Investment policy</subject><subject>Investment strategy</subject><subject>Martingales</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Stochastic processes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw98ksLM1MSSzJzM9TyE9TSMxTyMxLySzLLM5MyklVSCwuTi1RKM8syQAJpxakAom8EiC7LLW4JBfI5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpUBF8Vn5pUV5QKl4IwMLQ1NzQwMLM2PiVAEAR2M5YA</recordid><startdate>20150211</startdate><enddate>20150211</enddate><creator>Fabre, Emilie</creator><creator>Royer, Guillaume</creator><creator>Touzi, Nizar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150211</creationdate><title>Liquidation of an indivisible asset with independent investment</title><author>Fabre, Emilie ; Royer, Guillaume ; Touzi, Nizar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20815710863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Differential equations</topic><topic>Dynamic programming</topic><topic>Economic models</topic><topic>Expected utility</topic><topic>Investment policy</topic><topic>Investment strategy</topic><topic>Martingales</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Fabre, Emilie</creatorcontrib><creatorcontrib>Royer, Guillaume</creatorcontrib><creatorcontrib>Touzi, Nizar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabre, Emilie</au><au>Royer, Guillaume</au><au>Touzi, Nizar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Liquidation of an indivisible asset with independent investment</atitle><jtitle>arXiv.org</jtitle><date>2015-02-11</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We provide an extension of the explicit solution of a mixed optimal stopping-optimal stochastic control problem introduced by Henderson and Hobson. The problem examines wether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independent indivisible asset. The indivisible asset process is defined by a homogeneous scalar stochastic differential equation, and the investor's preferences are defined by a general expected utility function. The value function is obtained in explicit form, and we prove the existence of an optimal stopping-investment strategy characterized as the limit of an explicit maximizing strategy. Our approach is based on the standard dynamic programming approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081571086
source Free E- Journals
subjects Differential equations
Dynamic programming
Economic models
Expected utility
Investment policy
Investment strategy
Martingales
Optimal control
Optimization
Stochastic processes
title Liquidation of an indivisible asset with independent investment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Liquidation%20of%20an%20indivisible%20asset%20with%20independent%20investment&rft.jtitle=arXiv.org&rft.au=Fabre,%20Emilie&rft.date=2015-02-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081571086%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081571086&rft_id=info:pmid/&rfr_iscdi=true