Liquidation of an indivisible asset with independent investment
We provide an extension of the explicit solution of a mixed optimal stopping-optimal stochastic control problem introduced by Henderson and Hobson. The problem examines wether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fabre, Emilie Royer, Guillaume Touzi, Nizar |
description | We provide an extension of the explicit solution of a mixed optimal stopping-optimal stochastic control problem introduced by Henderson and Hobson. The problem examines wether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independent indivisible asset. The indivisible asset process is defined by a homogeneous scalar stochastic differential equation, and the investor's preferences are defined by a general expected utility function. The value function is obtained in explicit form, and we prove the existence of an optimal stopping-investment strategy characterized as the limit of an explicit maximizing strategy. Our approach is based on the standard dynamic programming approach. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081571086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081571086</sourcerecordid><originalsourceid>FETCH-proquest_journals_20815710863</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw98ksLM1MSSzJzM9TyE9TSMxTyMxLySzLLM5MyklVSCwuTi1RKM8syQAJpxakAom8EiC7LLW4JBfI5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpUBF8Vn5pUV5QKl4IwMLQ1NzQwMLM2PiVAEAR2M5YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081571086</pqid></control><display><type>article</type><title>Liquidation of an indivisible asset with independent investment</title><source>Free E- Journals</source><creator>Fabre, Emilie ; Royer, Guillaume ; Touzi, Nizar</creator><creatorcontrib>Fabre, Emilie ; Royer, Guillaume ; Touzi, Nizar</creatorcontrib><description>We provide an extension of the explicit solution of a mixed optimal stopping-optimal stochastic control problem introduced by Henderson and Hobson. The problem examines wether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independent indivisible asset. The indivisible asset process is defined by a homogeneous scalar stochastic differential equation, and the investor's preferences are defined by a general expected utility function. The value function is obtained in explicit form, and we prove the existence of an optimal stopping-investment strategy characterized as the limit of an explicit maximizing strategy. Our approach is based on the standard dynamic programming approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Dynamic programming ; Economic models ; Expected utility ; Investment policy ; Investment strategy ; Martingales ; Optimal control ; Optimization ; Stochastic processes</subject><ispartof>arXiv.org, 2015-02</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fabre, Emilie</creatorcontrib><creatorcontrib>Royer, Guillaume</creatorcontrib><creatorcontrib>Touzi, Nizar</creatorcontrib><title>Liquidation of an indivisible asset with independent investment</title><title>arXiv.org</title><description>We provide an extension of the explicit solution of a mixed optimal stopping-optimal stochastic control problem introduced by Henderson and Hobson. The problem examines wether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independent indivisible asset. The indivisible asset process is defined by a homogeneous scalar stochastic differential equation, and the investor's preferences are defined by a general expected utility function. The value function is obtained in explicit form, and we prove the existence of an optimal stopping-investment strategy characterized as the limit of an explicit maximizing strategy. Our approach is based on the standard dynamic programming approach.</description><subject>Differential equations</subject><subject>Dynamic programming</subject><subject>Economic models</subject><subject>Expected utility</subject><subject>Investment policy</subject><subject>Investment strategy</subject><subject>Martingales</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Stochastic processes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw98ksLM1MSSzJzM9TyE9TSMxTyMxLySzLLM5MyklVSCwuTi1RKM8syQAJpxakAom8EiC7LLW4JBfI5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpUBF8Vn5pUV5QKl4IwMLQ1NzQwMLM2PiVAEAR2M5YA</recordid><startdate>20150211</startdate><enddate>20150211</enddate><creator>Fabre, Emilie</creator><creator>Royer, Guillaume</creator><creator>Touzi, Nizar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150211</creationdate><title>Liquidation of an indivisible asset with independent investment</title><author>Fabre, Emilie ; Royer, Guillaume ; Touzi, Nizar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20815710863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Differential equations</topic><topic>Dynamic programming</topic><topic>Economic models</topic><topic>Expected utility</topic><topic>Investment policy</topic><topic>Investment strategy</topic><topic>Martingales</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Fabre, Emilie</creatorcontrib><creatorcontrib>Royer, Guillaume</creatorcontrib><creatorcontrib>Touzi, Nizar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabre, Emilie</au><au>Royer, Guillaume</au><au>Touzi, Nizar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Liquidation of an indivisible asset with independent investment</atitle><jtitle>arXiv.org</jtitle><date>2015-02-11</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We provide an extension of the explicit solution of a mixed optimal stopping-optimal stochastic control problem introduced by Henderson and Hobson. The problem examines wether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independent indivisible asset. The indivisible asset process is defined by a homogeneous scalar stochastic differential equation, and the investor's preferences are defined by a general expected utility function. The value function is obtained in explicit form, and we prove the existence of an optimal stopping-investment strategy characterized as the limit of an explicit maximizing strategy. Our approach is based on the standard dynamic programming approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081571086 |
source | Free E- Journals |
subjects | Differential equations Dynamic programming Economic models Expected utility Investment policy Investment strategy Martingales Optimal control Optimization Stochastic processes |
title | Liquidation of an indivisible asset with independent investment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Liquidation%20of%20an%20indivisible%20asset%20with%20independent%20investment&rft.jtitle=arXiv.org&rft.au=Fabre,%20Emilie&rft.date=2015-02-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081571086%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081571086&rft_id=info:pmid/&rfr_iscdi=true |