Atomistic modeling of thermo‐mechanical properties of cubic SiC

SiC is an important multifunctional material with application in electronics and as a structural material. Many investigations of SiC have been done using both classical molecular dynamics and first principles methods. However, they are of limited scope and, in particular, SiC properties at finite t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2018-10, Vol.101 (10), p.4753-4762
Hauptverfasser: Szpunar, Barbara, Malakkal, Linu, Rahman, Jahidur, Szpunar, Jerzy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4762
container_issue 10
container_start_page 4753
container_title Journal of the American Ceramic Society
container_volume 101
creator Szpunar, Barbara
Malakkal, Linu
Rahman, Jahidur
Szpunar, Jerzy A.
description SiC is an important multifunctional material with application in electronics and as a structural material. Many investigations of SiC have been done using both classical molecular dynamics and first principles methods. However, they are of limited scope and, in particular, SiC properties at finite temperatures have not been adequately evaluated. The good mechanical, thermal, and chemical properties of SiC such as high stiffness, high hardness, high mechanical strength at high temperature, and high thermal conductivity, make SiC a candidate for various applications in nuclear industries. In this work, we evaluated thermomechanical properties at finite temperatures obtained by LAMMPS code with traditionally used Tersoff potential (TR89 with PRB 41 correction), and the newer GW 2002 (GW02) potential. We compared them with the calculations made using MEAM 1995 (MEAM 95) and with our first principles DFT predictions. It is demonstrated that the thermal expansion and mechanical properties calculated as a function of temperature for classical potentials TR89 and GW02 do not agree well with first principles calculations while better agreement is found for the MEAM95 potential. Classical molecular dynamics calculations made with the use of two earlier potentials under‐predict thermal conductivity by one order of magnitude for the TR89 potential and by more than 30% for the GW02.
doi_str_mv 10.1111/jace.15712
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2081544484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081544484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3672-73f5acc1d18f376c8b15a282a5eb45d9b9b6be2496c9262fba41ae8977f49d853</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI5ufIKCO6Fjbpq0ybKU8Y8BF-o6pGniZGinY9Iis_MRfEafxIx17d1cLnznnsNB6BLwAuLcbJQ2C2AFkCM0A8YgJQLyYzTDGJO04ASforMQNvEEwekMleXQdy4MTidd35jWbd-S3ibD2viu__786oxeq63Tqk12vt8ZPzgTDoQe66h5dtU5OrGqDebib8_R6-3ypbpPV093D1W5SnWWF9E7s0xpDQ1wmxW55jUwRThRzNSUNaIWdV4bQkWuBcmJrRUFZbgoCktFw1k2R1fT35jjfTRhkJt-9NtoKQnmwCilnEbqeqK070Pwxsqdd53yewlYHiqSh4rkb0URhgn-cK3Z_0PKx7JaTpofvmBpCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081544484</pqid></control><display><type>article</type><title>Atomistic modeling of thermo‐mechanical properties of cubic SiC</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Szpunar, Barbara ; Malakkal, Linu ; Rahman, Jahidur ; Szpunar, Jerzy A.</creator><creatorcontrib>Szpunar, Barbara ; Malakkal, Linu ; Rahman, Jahidur ; Szpunar, Jerzy A.</creatorcontrib><description>SiC is an important multifunctional material with application in electronics and as a structural material. Many investigations of SiC have been done using both classical molecular dynamics and first principles methods. However, they are of limited scope and, in particular, SiC properties at finite temperatures have not been adequately evaluated. The good mechanical, thermal, and chemical properties of SiC such as high stiffness, high hardness, high mechanical strength at high temperature, and high thermal conductivity, make SiC a candidate for various applications in nuclear industries. In this work, we evaluated thermomechanical properties at finite temperatures obtained by LAMMPS code with traditionally used Tersoff potential (TR89 with PRB 41 correction), and the newer GW 2002 (GW02) potential. We compared them with the calculations made using MEAM 1995 (MEAM 95) and with our first principles DFT predictions. It is demonstrated that the thermal expansion and mechanical properties calculated as a function of temperature for classical potentials TR89 and GW02 do not agree well with first principles calculations while better agreement is found for the MEAM95 potential. Classical molecular dynamics calculations made with the use of two earlier potentials under‐predict thermal conductivity by one order of magnitude for the TR89 potential and by more than 30% for the GW02.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.15712</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Chemical properties ; First principles ; Heat conductivity ; Heat transfer ; Mechanical properties ; Molecular dynamics ; Organic chemistry ; Silicon carbide ; Stiffness ; Thermal conductivity ; Thermal expansion ; Thermomechanical properties</subject><ispartof>Journal of the American Ceramic Society, 2018-10, Vol.101 (10), p.4753-4762</ispartof><rights>2018 The American Ceramic Society</rights><rights>2018 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3672-73f5acc1d18f376c8b15a282a5eb45d9b9b6be2496c9262fba41ae8977f49d853</citedby><cites>FETCH-LOGICAL-c3672-73f5acc1d18f376c8b15a282a5eb45d9b9b6be2496c9262fba41ae8977f49d853</cites><orcidid>0000-0002-4326-0203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.15712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.15712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Szpunar, Barbara</creatorcontrib><creatorcontrib>Malakkal, Linu</creatorcontrib><creatorcontrib>Rahman, Jahidur</creatorcontrib><creatorcontrib>Szpunar, Jerzy A.</creatorcontrib><title>Atomistic modeling of thermo‐mechanical properties of cubic SiC</title><title>Journal of the American Ceramic Society</title><description>SiC is an important multifunctional material with application in electronics and as a structural material. Many investigations of SiC have been done using both classical molecular dynamics and first principles methods. However, they are of limited scope and, in particular, SiC properties at finite temperatures have not been adequately evaluated. The good mechanical, thermal, and chemical properties of SiC such as high stiffness, high hardness, high mechanical strength at high temperature, and high thermal conductivity, make SiC a candidate for various applications in nuclear industries. In this work, we evaluated thermomechanical properties at finite temperatures obtained by LAMMPS code with traditionally used Tersoff potential (TR89 with PRB 41 correction), and the newer GW 2002 (GW02) potential. We compared them with the calculations made using MEAM 1995 (MEAM 95) and with our first principles DFT predictions. It is demonstrated that the thermal expansion and mechanical properties calculated as a function of temperature for classical potentials TR89 and GW02 do not agree well with first principles calculations while better agreement is found for the MEAM95 potential. Classical molecular dynamics calculations made with the use of two earlier potentials under‐predict thermal conductivity by one order of magnitude for the TR89 potential and by more than 30% for the GW02.</description><subject>Chemical properties</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Organic chemistry</subject><subject>Silicon carbide</subject><subject>Stiffness</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermomechanical properties</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI5ufIKCO6Fjbpq0ybKU8Y8BF-o6pGniZGinY9Iis_MRfEafxIx17d1cLnznnsNB6BLwAuLcbJQ2C2AFkCM0A8YgJQLyYzTDGJO04ASforMQNvEEwekMleXQdy4MTidd35jWbd-S3ibD2viu__786oxeq63Tqk12vt8ZPzgTDoQe66h5dtU5OrGqDebib8_R6-3ypbpPV093D1W5SnWWF9E7s0xpDQ1wmxW55jUwRThRzNSUNaIWdV4bQkWuBcmJrRUFZbgoCktFw1k2R1fT35jjfTRhkJt-9NtoKQnmwCilnEbqeqK070Pwxsqdd53yewlYHiqSh4rkb0URhgn-cK3Z_0PKx7JaTpofvmBpCg</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Szpunar, Barbara</creator><creator>Malakkal, Linu</creator><creator>Rahman, Jahidur</creator><creator>Szpunar, Jerzy A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4326-0203</orcidid></search><sort><creationdate>201810</creationdate><title>Atomistic modeling of thermo‐mechanical properties of cubic SiC</title><author>Szpunar, Barbara ; Malakkal, Linu ; Rahman, Jahidur ; Szpunar, Jerzy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3672-73f5acc1d18f376c8b15a282a5eb45d9b9b6be2496c9262fba41ae8977f49d853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical properties</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Organic chemistry</topic><topic>Silicon carbide</topic><topic>Stiffness</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermomechanical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szpunar, Barbara</creatorcontrib><creatorcontrib>Malakkal, Linu</creatorcontrib><creatorcontrib>Rahman, Jahidur</creatorcontrib><creatorcontrib>Szpunar, Jerzy A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szpunar, Barbara</au><au>Malakkal, Linu</au><au>Rahman, Jahidur</au><au>Szpunar, Jerzy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic modeling of thermo‐mechanical properties of cubic SiC</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2018-10</date><risdate>2018</risdate><volume>101</volume><issue>10</issue><spage>4753</spage><epage>4762</epage><pages>4753-4762</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>SiC is an important multifunctional material with application in electronics and as a structural material. Many investigations of SiC have been done using both classical molecular dynamics and first principles methods. However, they are of limited scope and, in particular, SiC properties at finite temperatures have not been adequately evaluated. The good mechanical, thermal, and chemical properties of SiC such as high stiffness, high hardness, high mechanical strength at high temperature, and high thermal conductivity, make SiC a candidate for various applications in nuclear industries. In this work, we evaluated thermomechanical properties at finite temperatures obtained by LAMMPS code with traditionally used Tersoff potential (TR89 with PRB 41 correction), and the newer GW 2002 (GW02) potential. We compared them with the calculations made using MEAM 1995 (MEAM 95) and with our first principles DFT predictions. It is demonstrated that the thermal expansion and mechanical properties calculated as a function of temperature for classical potentials TR89 and GW02 do not agree well with first principles calculations while better agreement is found for the MEAM95 potential. Classical molecular dynamics calculations made with the use of two earlier potentials under‐predict thermal conductivity by one order of magnitude for the TR89 potential and by more than 30% for the GW02.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.15712</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4326-0203</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2018-10, Vol.101 (10), p.4753-4762
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2081544484
source Wiley Online Library Journals Frontfile Complete
subjects Chemical properties
First principles
Heat conductivity
Heat transfer
Mechanical properties
Molecular dynamics
Organic chemistry
Silicon carbide
Stiffness
Thermal conductivity
Thermal expansion
Thermomechanical properties
title Atomistic modeling of thermo‐mechanical properties of cubic SiC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20modeling%20of%20thermo%E2%80%90mechanical%20properties%20of%20cubic%20SiC&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Szpunar,%20Barbara&rft.date=2018-10&rft.volume=101&rft.issue=10&rft.spage=4753&rft.epage=4762&rft.pages=4753-4762&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.15712&rft_dat=%3Cproquest_cross%3E2081544484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081544484&rft_id=info:pmid/&rfr_iscdi=true