The surpluses immediately before and at ruin, and the amount of the claim causing ruin

In the classical compound Poisson model of the collective risk theory we consider X, the surplus before the claim that causes ruin, and Y, the deficit at the time of ruin. We denote by f( u; x, y) their joint density ( u initial surplus) which is a defective probability density (since X and Y are on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 1988-10, Vol.7 (3), p.193-199
Hauptverfasser: Dufresne, François, Gerber, Hans U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 3
container_start_page 193
container_title Insurance, mathematics & economics
container_volume 7
creator Dufresne, François
Gerber, Hans U.
description In the classical compound Poisson model of the collective risk theory we consider X, the surplus before the claim that causes ruin, and Y, the deficit at the time of ruin. We denote by f( u; x, y) their joint density ( u initial surplus) which is a defective probability density (since X and Y are only defined, if ruin takes place). For an arbitrary claim amount distribution we find that f(0; x, y) = ap( x + y), where p( z) is the probability density function of a claim amount and a is the ratio of the Poisson parameter and the rate of premium income. In the more realistic case, where u is positive, f( u; x, y) can be calculated explicitly, if the claim amount distribution is exponential or, more generally, a combination of exponential distributions. We are also interested in X + Y, the amount of the claim that causes ruin. Its density h( u; z) can be obtained from f( u; x, y). One finds, for example, that h(0; z) = azp( z).
doi_str_mv 10.1016/0167-6687(88)90076-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_208151400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0167668788900765</els_id><sourcerecordid>1130821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-1884aa43b28921bef1402f414ad6b751f874b700e321308d4c22fb64a169bcf3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxfFlYLVpEmbZCPI4GNgwM3gNqTprZNh-jBJB-bfm2nFpYtDuOGccy8fQtcEPxBMisconhaF4LdC3EmMeZHmJ2hGBKdpLnN5imZ_lnN04f0WY0xkwWfoc72BxA-u3w0efGKbBiqrA-wOSQl15yDRbZXokLjBtvfjEGJCN93QhqSrx8nstG0Sowdv26_ReYnOar3zcPX7ztH69WW9eE9XH2_LxfMqNUyykBIhmNaMlpmQGYkLCcNZzQjTVVHynNSCs5JjDDQjFIuKmSyry4JpUsjS1HSObqba3nXfA_igtt3g2rhRZViQPNbhaGKTybjOewe16p1ttDsogtWRnzrCUUc4Sgg18lN5jC2nmIMezF8GAGzrh0arvaKaRx2iiIxJqm0UjerHL6qIlGoTmtj1NHVBZLG34JQ3FloTWTswQVWd_f-YHzfzjzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208151400</pqid></control><display><type>article</type><title>The surpluses immediately before and at ruin, and the amount of the claim causing ruin</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Dufresne, François ; Gerber, Hans U.</creator><creatorcontrib>Dufresne, François ; Gerber, Hans U.</creatorcontrib><description>In the classical compound Poisson model of the collective risk theory we consider X, the surplus before the claim that causes ruin, and Y, the deficit at the time of ruin. We denote by f( u; x, y) their joint density ( u initial surplus) which is a defective probability density (since X and Y are only defined, if ruin takes place). For an arbitrary claim amount distribution we find that f(0; x, y) = ap( x + y), where p( z) is the probability density function of a claim amount and a is the ratio of the Poisson parameter and the rate of premium income. In the more realistic case, where u is positive, f( u; x, y) can be calculated explicitly, if the claim amount distribution is exponential or, more generally, a combination of exponential distributions. We are also interested in X + Y, the amount of the claim that causes ruin. Its density h( u; z) can be obtained from f( u; x, y). One finds, for example, that h(0; z) = azp( z).</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/0167-6687(88)90076-5</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Combination of exponential claim amount distributions ; Insurance claims ; Mathematical analysis ; Mathematical models ; Probability ; Ruin theory ; Surpluses ; Surpluses before and at ruin</subject><ispartof>Insurance, mathematics &amp; economics, 1988-10, Vol.7 (3), p.193-199</ispartof><rights>1988</rights><rights>Copyright Elsevier Sequoia S.A. Oct 1988</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-1884aa43b28921bef1402f414ad6b751f874b700e321308d4c22fb64a169bcf3</citedby><cites>FETCH-LOGICAL-c494t-1884aa43b28921bef1402f414ad6b751f874b700e321308d4c22fb64a169bcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0167-6687(88)90076-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,3996,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a7_3ay_3a1988_3ai_3a3_3ap_3a193-199.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Dufresne, François</creatorcontrib><creatorcontrib>Gerber, Hans U.</creatorcontrib><title>The surpluses immediately before and at ruin, and the amount of the claim causing ruin</title><title>Insurance, mathematics &amp; economics</title><description>In the classical compound Poisson model of the collective risk theory we consider X, the surplus before the claim that causes ruin, and Y, the deficit at the time of ruin. We denote by f( u; x, y) their joint density ( u initial surplus) which is a defective probability density (since X and Y are only defined, if ruin takes place). For an arbitrary claim amount distribution we find that f(0; x, y) = ap( x + y), where p( z) is the probability density function of a claim amount and a is the ratio of the Poisson parameter and the rate of premium income. In the more realistic case, where u is positive, f( u; x, y) can be calculated explicitly, if the claim amount distribution is exponential or, more generally, a combination of exponential distributions. We are also interested in X + Y, the amount of the claim that causes ruin. Its density h( u; z) can be obtained from f( u; x, y). One finds, for example, that h(0; z) = azp( z).</description><subject>Combination of exponential claim amount distributions</subject><subject>Insurance claims</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Probability</subject><subject>Ruin theory</subject><subject>Surpluses</subject><subject>Surpluses before and at ruin</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AxfFlYLVpEmbZCPI4GNgwM3gNqTprZNh-jBJB-bfm2nFpYtDuOGccy8fQtcEPxBMisconhaF4LdC3EmMeZHmJ2hGBKdpLnN5imZ_lnN04f0WY0xkwWfoc72BxA-u3w0efGKbBiqrA-wOSQl15yDRbZXokLjBtvfjEGJCN93QhqSrx8nstG0Sowdv26_ReYnOar3zcPX7ztH69WW9eE9XH2_LxfMqNUyykBIhmNaMlpmQGYkLCcNZzQjTVVHynNSCs5JjDDQjFIuKmSyry4JpUsjS1HSObqba3nXfA_igtt3g2rhRZViQPNbhaGKTybjOewe16p1ttDsogtWRnzrCUUc4Sgg18lN5jC2nmIMezF8GAGzrh0arvaKaRx2iiIxJqm0UjerHL6qIlGoTmtj1NHVBZLG34JQ3FloTWTswQVWd_f-YHzfzjzQ</recordid><startdate>19881001</startdate><enddate>19881001</enddate><creator>Dufresne, François</creator><creator>Gerber, Hans U.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>19881001</creationdate><title>The surpluses immediately before and at ruin, and the amount of the claim causing ruin</title><author>Dufresne, François ; Gerber, Hans U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-1884aa43b28921bef1402f414ad6b751f874b700e321308d4c22fb64a169bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Combination of exponential claim amount distributions</topic><topic>Insurance claims</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Probability</topic><topic>Ruin theory</topic><topic>Surpluses</topic><topic>Surpluses before and at ruin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dufresne, François</creatorcontrib><creatorcontrib>Gerber, Hans U.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dufresne, François</au><au>Gerber, Hans U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The surpluses immediately before and at ruin, and the amount of the claim causing ruin</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>1988-10-01</date><risdate>1988</risdate><volume>7</volume><issue>3</issue><spage>193</spage><epage>199</epage><pages>193-199</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>In the classical compound Poisson model of the collective risk theory we consider X, the surplus before the claim that causes ruin, and Y, the deficit at the time of ruin. We denote by f( u; x, y) their joint density ( u initial surplus) which is a defective probability density (since X and Y are only defined, if ruin takes place). For an arbitrary claim amount distribution we find that f(0; x, y) = ap( x + y), where p( z) is the probability density function of a claim amount and a is the ratio of the Poisson parameter and the rate of premium income. In the more realistic case, where u is positive, f( u; x, y) can be calculated explicitly, if the claim amount distribution is exponential or, more generally, a combination of exponential distributions. We are also interested in X + Y, the amount of the claim that causes ruin. Its density h( u; z) can be obtained from f( u; x, y). One finds, for example, that h(0; z) = azp( z).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0167-6687(88)90076-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 1988-10, Vol.7 (3), p.193-199
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_journals_208151400
source RePEc; Elsevier ScienceDirect Journals
subjects Combination of exponential claim amount distributions
Insurance claims
Mathematical analysis
Mathematical models
Probability
Ruin theory
Surpluses
Surpluses before and at ruin
title The surpluses immediately before and at ruin, and the amount of the claim causing ruin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20surpluses%20immediately%20before%20and%20at%20ruin,%20and%20the%20amount%20of%20the%20claim%20causing%20ruin&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Dufresne,%20Fran%C3%A7ois&rft.date=1988-10-01&rft.volume=7&rft.issue=3&rft.spage=193&rft.epage=199&rft.pages=193-199&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/0167-6687(88)90076-5&rft_dat=%3Cproquest_cross%3E1130821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208151400&rft_id=info:pmid/&rft_els_id=0167668788900765&rfr_iscdi=true