Extensions of locally compact abelian, torsion-free groups by compact torsion abelian groups

Let \(X\) be a compact torsion abelian group. In this paper, we show that an extension of \(F_{p}\) by \(X\) splits where \(F_{p}\) is the p-adic number group and \(p\) a prime number. Also, we show that an extension of a torsion-free, non-divisible LCA group by \(X\) is not split.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-03
Hauptverfasser: Hossain Sahleh, Ali Akbar Alijani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hossain Sahleh
Ali Akbar Alijani
description Let \(X\) be a compact torsion abelian group. In this paper, we show that an extension of \(F_{p}\) by \(X\) splits where \(F_{p}\) is the p-adic number group and \(p\) a prime number. Also, we show that an extension of a torsion-free, non-divisible LCA group by \(X\) is not split.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081443350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081443350</sourcerecordid><originalsourceid>FETCH-proquest_journals_20814433503</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5Dge6TZiblvdh9ABdBjJlirJ21s4G9fYVGN129V_834IlQso8qwohViwlmjjnYn8QZSkTdq0fQVsa0RJgDwY7ZcwTOrw51QVQrTajsjsI6D8o673WMHiMjqD9uXl__Sw2bNkrQzqdu2bbU305njPn8R41hWbC6O17NYJXeVFIWXL5n3oBH6JECg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081443350</pqid></control><display><type>article</type><title>Extensions of locally compact abelian, torsion-free groups by compact torsion abelian groups</title><source>Free E- Journals</source><creator>Hossain Sahleh ; Ali Akbar Alijani</creator><creatorcontrib>Hossain Sahleh ; Ali Akbar Alijani</creatorcontrib><description>Let \(X\) be a compact torsion abelian group. In this paper, we show that an extension of \(F_{p}\) by \(X\) splits where \(F_{p}\) is the p-adic number group and \(p\) a prime number. Also, we show that an extension of a torsion-free, non-divisible LCA group by \(X\) is not split.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Group theory ; Torsion</subject><ispartof>arXiv.org, 2015-03</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hossain Sahleh</creatorcontrib><creatorcontrib>Ali Akbar Alijani</creatorcontrib><title>Extensions of locally compact abelian, torsion-free groups by compact torsion abelian groups</title><title>arXiv.org</title><description>Let \(X\) be a compact torsion abelian group. In this paper, we show that an extension of \(F_{p}\) by \(X\) splits where \(F_{p}\) is the p-adic number group and \(p\) a prime number. Also, we show that an extension of a torsion-free, non-divisible LCA group by \(X\) is not split.</description><subject>Group theory</subject><subject>Torsion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNytEKgjAUgOERBEn5Dge6TZiblvdh9ABdBjJlirJ21s4G9fYVGN129V_834IlQso8qwohViwlmjjnYn8QZSkTdq0fQVsa0RJgDwY7ZcwTOrw51QVQrTajsjsI6D8o673WMHiMjqD9uXl__Sw2bNkrQzqdu2bbU305njPn8R41hWbC6O17NYJXeVFIWXL5n3oBH6JECg</recordid><startdate>20150308</startdate><enddate>20150308</enddate><creator>Hossain Sahleh</creator><creator>Ali Akbar Alijani</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150308</creationdate><title>Extensions of locally compact abelian, torsion-free groups by compact torsion abelian groups</title><author>Hossain Sahleh ; Ali Akbar Alijani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20814433503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Group theory</topic><topic>Torsion</topic><toplevel>online_resources</toplevel><creatorcontrib>Hossain Sahleh</creatorcontrib><creatorcontrib>Ali Akbar Alijani</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain Sahleh</au><au>Ali Akbar Alijani</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Extensions of locally compact abelian, torsion-free groups by compact torsion abelian groups</atitle><jtitle>arXiv.org</jtitle><date>2015-03-08</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Let \(X\) be a compact torsion abelian group. In this paper, we show that an extension of \(F_{p}\) by \(X\) splits where \(F_{p}\) is the p-adic number group and \(p\) a prime number. Also, we show that an extension of a torsion-free, non-divisible LCA group by \(X\) is not split.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081443350
source Free E- Journals
subjects Group theory
Torsion
title Extensions of locally compact abelian, torsion-free groups by compact torsion abelian groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Extensions%20of%20locally%20compact%20abelian,%20torsion-free%20groups%20by%20compact%20torsion%20abelian%20groups&rft.jtitle=arXiv.org&rft.au=Hossain%20Sahleh&rft.date=2015-03-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081443350%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081443350&rft_id=info:pmid/&rfr_iscdi=true