On the ordering of trees by the Laplacian coefficients
We generalize the results from [X.-D. Zhang, X.-P. Lv, Y.-H. Chen, \textit{Ordering trees by the Laplacian coefficients}, Linear Algebra Appl. (2009), doi:10.1016/j.laa.2009.04.018] on the partial ordering of trees with given diameter. For two \(n\)-vertex trees \(T_1\) and \(T_2\), if \(c_k (T_1) \...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2011-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aleksandar Ili\' c |
description | We generalize the results from [X.-D. Zhang, X.-P. Lv, Y.-H. Chen, \textit{Ordering trees by the Laplacian coefficients}, Linear Algebra Appl. (2009), doi:10.1016/j.laa.2009.04.018] on the partial ordering of trees with given diameter. For two \(n\)-vertex trees \(T_1\) and \(T_2\), if \(c_k (T_1) \leqslant c_k (T_2)\) holds for all Laplacian coefficients \(c_k\), \(k = 0, 1, ..., n\), we say that \(T_1\) is dominated by \(T_2\) and write \(T_1 \preceq_c T_2\). We proved that among \(n\) vertex trees with fixed diameter \(d\), the caterpillar \(C_{n, d}\) has minimal Laplacian coefficients \(c_k\), \(k = 0, 1,..., n\). The number of incomparable pairs of trees on \(\leqslant 18\) vertices is presented, as well as infinite families of examples for two other partial orderings of trees, recently proposed by Mohar. For every integer \(n\), we construct a chain \(\{T_i\}_{i = 0}^m\) of \(n\)-vertex trees of length \(\frac{n^2}{4}\), such that \(T_0 \cong S_n\), \(T_m \cong P_n\) and \(T_i \preceq_c T_{i + 1}\) for all \(i = 0, 1,..., m - 1\). In addition, the characterization of the partial ordering of starlike trees is established by the majorization inequalities of the pendent path lengths. We determine the relations among the extremal trees with fixed maximum degree, and with perfect matching and further support the Laplacian coefficients as a measure of branching. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081217491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081217491</sourcerecordid><originalsourceid>FETCH-proquest_journals_20812174913</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw889TKMlIVcgvSkktysxLV8hPUygpSk0tVkiqBEv4JBbkJCZnJuYpJOenpqVlJmem5pUU8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGBhaGRobmJpaExcaoAkNQ05A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081217491</pqid></control><display><type>article</type><title>On the ordering of trees by the Laplacian coefficients</title><source>Free E- Journals</source><creator>Aleksandar Ili\' c</creator><creatorcontrib>Aleksandar Ili\' c</creatorcontrib><description>We generalize the results from [X.-D. Zhang, X.-P. Lv, Y.-H. Chen, \textit{Ordering trees by the Laplacian coefficients}, Linear Algebra Appl. (2009), doi:10.1016/j.laa.2009.04.018] on the partial ordering of trees with given diameter. For two \(n\)-vertex trees \(T_1\) and \(T_2\), if \(c_k (T_1) \leqslant c_k (T_2)\) holds for all Laplacian coefficients \(c_k\), \(k = 0, 1, ..., n\), we say that \(T_1\) is dominated by \(T_2\) and write \(T_1 \preceq_c T_2\). We proved that among \(n\) vertex trees with fixed diameter \(d\), the caterpillar \(C_{n, d}\) has minimal Laplacian coefficients \(c_k\), \(k = 0, 1,..., n\). The number of incomparable pairs of trees on \(\leqslant 18\) vertices is presented, as well as infinite families of examples for two other partial orderings of trees, recently proposed by Mohar. For every integer \(n\), we construct a chain \(\{T_i\}_{i = 0}^m\) of \(n\)-vertex trees of length \(\frac{n^2}{4}\), such that \(T_0 \cong S_n\), \(T_m \cong P_n\) and \(T_i \preceq_c T_{i + 1}\) for all \(i = 0, 1,..., m - 1\). In addition, the characterization of the partial ordering of starlike trees is established by the majorization inequalities of the pendent path lengths. We determine the relations among the extremal trees with fixed maximum degree, and with perfect matching and further support the Laplacian coefficients as a measure of branching.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Coefficients ; Linear algebra ; Trees (mathematics)</subject><ispartof>arXiv.org, 2011-04</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Aleksandar Ili\' c</creatorcontrib><title>On the ordering of trees by the Laplacian coefficients</title><title>arXiv.org</title><description>We generalize the results from [X.-D. Zhang, X.-P. Lv, Y.-H. Chen, \textit{Ordering trees by the Laplacian coefficients}, Linear Algebra Appl. (2009), doi:10.1016/j.laa.2009.04.018] on the partial ordering of trees with given diameter. For two \(n\)-vertex trees \(T_1\) and \(T_2\), if \(c_k (T_1) \leqslant c_k (T_2)\) holds for all Laplacian coefficients \(c_k\), \(k = 0, 1, ..., n\), we say that \(T_1\) is dominated by \(T_2\) and write \(T_1 \preceq_c T_2\). We proved that among \(n\) vertex trees with fixed diameter \(d\), the caterpillar \(C_{n, d}\) has minimal Laplacian coefficients \(c_k\), \(k = 0, 1,..., n\). The number of incomparable pairs of trees on \(\leqslant 18\) vertices is presented, as well as infinite families of examples for two other partial orderings of trees, recently proposed by Mohar. For every integer \(n\), we construct a chain \(\{T_i\}_{i = 0}^m\) of \(n\)-vertex trees of length \(\frac{n^2}{4}\), such that \(T_0 \cong S_n\), \(T_m \cong P_n\) and \(T_i \preceq_c T_{i + 1}\) for all \(i = 0, 1,..., m - 1\). In addition, the characterization of the partial ordering of starlike trees is established by the majorization inequalities of the pendent path lengths. We determine the relations among the extremal trees with fixed maximum degree, and with perfect matching and further support the Laplacian coefficients as a measure of branching.</description><subject>Apexes</subject><subject>Coefficients</subject><subject>Linear algebra</subject><subject>Trees (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw889TKMlIVcgvSkktysxLV8hPUygpSk0tVkiqBEv4JBbkJCZnJuYpJOenpqVlJmem5pUU8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGBhaGRobmJpaExcaoAkNQ05A</recordid><startdate>20110421</startdate><enddate>20110421</enddate><creator>Aleksandar Ili\' c</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110421</creationdate><title>On the ordering of trees by the Laplacian coefficients</title><author>Aleksandar Ili\' c</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20812174913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Apexes</topic><topic>Coefficients</topic><topic>Linear algebra</topic><topic>Trees (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Aleksandar Ili\' c</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aleksandar Ili\' c</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the ordering of trees by the Laplacian coefficients</atitle><jtitle>arXiv.org</jtitle><date>2011-04-21</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>We generalize the results from [X.-D. Zhang, X.-P. Lv, Y.-H. Chen, \textit{Ordering trees by the Laplacian coefficients}, Linear Algebra Appl. (2009), doi:10.1016/j.laa.2009.04.018] on the partial ordering of trees with given diameter. For two \(n\)-vertex trees \(T_1\) and \(T_2\), if \(c_k (T_1) \leqslant c_k (T_2)\) holds for all Laplacian coefficients \(c_k\), \(k = 0, 1, ..., n\), we say that \(T_1\) is dominated by \(T_2\) and write \(T_1 \preceq_c T_2\). We proved that among \(n\) vertex trees with fixed diameter \(d\), the caterpillar \(C_{n, d}\) has minimal Laplacian coefficients \(c_k\), \(k = 0, 1,..., n\). The number of incomparable pairs of trees on \(\leqslant 18\) vertices is presented, as well as infinite families of examples for two other partial orderings of trees, recently proposed by Mohar. For every integer \(n\), we construct a chain \(\{T_i\}_{i = 0}^m\) of \(n\)-vertex trees of length \(\frac{n^2}{4}\), such that \(T_0 \cong S_n\), \(T_m \cong P_n\) and \(T_i \preceq_c T_{i + 1}\) for all \(i = 0, 1,..., m - 1\). In addition, the characterization of the partial ordering of starlike trees is established by the majorization inequalities of the pendent path lengths. We determine the relations among the extremal trees with fixed maximum degree, and with perfect matching and further support the Laplacian coefficients as a measure of branching.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081217491 |
source | Free E- Journals |
subjects | Apexes Coefficients Linear algebra Trees (mathematics) |
title | On the ordering of trees by the Laplacian coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20ordering%20of%20trees%20by%20the%20Laplacian%20coefficients&rft.jtitle=arXiv.org&rft.au=Aleksandar%20Ili%5C'%20c&rft.date=2011-04-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081217491%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081217491&rft_id=info:pmid/&rfr_iscdi=true |