Counting points on bilinear and trilinear hypersurfaces

Consider an irreducible bilinear form \(f(x_1,x_2;y_1,y_2)\) with integer coefficients. We derive an upper bound for the number of integer points \((\mathbf{x},\mathbf{y})\in\mathbb{P}^1\times\mathbb{P}^1\) inside a box satisfying the equation \(f=0\). Our bound seems to be the best possible bound a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-02
1. Verfasser: Reuss, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider an irreducible bilinear form \(f(x_1,x_2;y_1,y_2)\) with integer coefficients. We derive an upper bound for the number of integer points \((\mathbf{x},\mathbf{y})\in\mathbb{P}^1\times\mathbb{P}^1\) inside a box satisfying the equation \(f=0\). Our bound seems to be the best possible bound and the main term decreases with a larger determinant of the form \(f\). We further discuss the case when \(f(x_1,x_2;y_1,y_2;z_1,z_2)\) is an irreducible non-singular trilinear form defined on \(\mathbb{P}^1\times \mathbb{P}^1\times\mathbb{P}^1\), with integer coefficients. In this case, we examine the singularity and reducibility conditions of \(f\). To do this, we employ the Cayley hyperdeterminant \(D\) associated to \(f\). We then derive an upper bound for the number of integer points in boxes on such trilinear forms. The main term of the estimate improves with larger \(D\). Our methods are based on elementary lattice results.
ISSN:2331-8422