Asymptotic Behaviours of Solutions for Finite Difference Analogue of the Chipot-Weissler Equation
This paper deals with nonlinear parabolic equation for which a local solution in time exists and then blows up in a finite time. We consider the Chipot-Weissler equation. We study the numerical approximation, we show that the numerical solution converges to the continuous one under some restriction...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Houda Hani Khenissi, Moez |
description | This paper deals with nonlinear parabolic equation for which a local solution in time exists and then blows up in a finite time. We consider the Chipot-Weissler equation. We study the numerical approximation, we show that the numerical solution converges to the continuous one under some restriction on the initial data and the parameters of the non linearity. Moreover, we study the numerical blow up sets and we show that although the convergence of the numerical solution is guaranteed, the numerical blow up sets are sometimes different from that of the PDE |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081126947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081126947</sourcerecordid><originalsourceid>FETCH-proquest_journals_20811269473</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRYMgWNQ7DLgupKm2uqzV4l7BZQkysZHaaTOJ4O214AFcvc17_09EpNI0ibdrpWZiyfyQUqosV5tNGgld8PvZe_L2Bnts9MtScAxk4Ext8JY6BkMOKttZj3CwxqDD7oZQdLqle8DR9Q1C2diefHxFy9yig-MQ9NgvxNTolnH541ysquOlPMW9oyEg-_rxvfyOca3kNklUtlvn6X_WB2OPRXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081126947</pqid></control><display><type>article</type><title>Asymptotic Behaviours of Solutions for Finite Difference Analogue of the Chipot-Weissler Equation</title><source>Free E- Journals</source><creator>Houda Hani ; Khenissi, Moez</creator><creatorcontrib>Houda Hani ; Khenissi, Moez</creatorcontrib><description>This paper deals with nonlinear parabolic equation for which a local solution in time exists and then blows up in a finite time. We consider the Chipot-Weissler equation. We study the numerical approximation, we show that the numerical solution converges to the continuous one under some restriction on the initial data and the parameters of the non linearity. Moreover, we study the numerical blow up sets and we show that although the convergence of the numerical solution is guaranteed, the numerical blow up sets are sometimes different from that of the PDE</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Finite difference method ; Linearity</subject><ispartof>arXiv.org, 2015-02</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Houda Hani</creatorcontrib><creatorcontrib>Khenissi, Moez</creatorcontrib><title>Asymptotic Behaviours of Solutions for Finite Difference Analogue of the Chipot-Weissler Equation</title><title>arXiv.org</title><description>This paper deals with nonlinear parabolic equation for which a local solution in time exists and then blows up in a finite time. We consider the Chipot-Weissler equation. We study the numerical approximation, we show that the numerical solution converges to the continuous one under some restriction on the initial data and the parameters of the non linearity. Moreover, we study the numerical blow up sets and we show that although the convergence of the numerical solution is guaranteed, the numerical blow up sets are sometimes different from that of the PDE</description><subject>Convergence</subject><subject>Finite difference method</subject><subject>Linearity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjUEKwjAQRYMgWNQ7DLgupKm2uqzV4l7BZQkysZHaaTOJ4O214AFcvc17_09EpNI0ibdrpWZiyfyQUqosV5tNGgld8PvZe_L2Bnts9MtScAxk4Ext8JY6BkMOKttZj3CwxqDD7oZQdLqle8DR9Q1C2diefHxFy9yig-MQ9NgvxNTolnH541ysquOlPMW9oyEg-_rxvfyOca3kNklUtlvn6X_WB2OPRXs</recordid><startdate>20150210</startdate><enddate>20150210</enddate><creator>Houda Hani</creator><creator>Khenissi, Moez</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150210</creationdate><title>Asymptotic Behaviours of Solutions for Finite Difference Analogue of the Chipot-Weissler Equation</title><author>Houda Hani ; Khenissi, Moez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20811269473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Convergence</topic><topic>Finite difference method</topic><topic>Linearity</topic><toplevel>online_resources</toplevel><creatorcontrib>Houda Hani</creatorcontrib><creatorcontrib>Khenissi, Moez</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houda Hani</au><au>Khenissi, Moez</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Asymptotic Behaviours of Solutions for Finite Difference Analogue of the Chipot-Weissler Equation</atitle><jtitle>arXiv.org</jtitle><date>2015-02-10</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>This paper deals with nonlinear parabolic equation for which a local solution in time exists and then blows up in a finite time. We consider the Chipot-Weissler equation. We study the numerical approximation, we show that the numerical solution converges to the continuous one under some restriction on the initial data and the parameters of the non linearity. Moreover, we study the numerical blow up sets and we show that although the convergence of the numerical solution is guaranteed, the numerical blow up sets are sometimes different from that of the PDE</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081126947 |
source | Free E- Journals |
subjects | Convergence Finite difference method Linearity |
title | Asymptotic Behaviours of Solutions for Finite Difference Analogue of the Chipot-Weissler Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Asymptotic%20Behaviours%20of%20Solutions%20for%20Finite%20Difference%20Analogue%20of%20the%20Chipot-Weissler%20Equation&rft.jtitle=arXiv.org&rft.au=Houda%20Hani&rft.date=2015-02-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081126947%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081126947&rft_id=info:pmid/&rfr_iscdi=true |