The cone percolation model on Galton-Watson and on spherically symmetric trees
We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Valdivino Vargas Junior Fábio Prates Machado Krishnamurthi Ravishankar |
description | We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the probability of that event, according to the distribution of the random variables that defines the radius of influence of each individual. We work with Galton-Watson branching trees (homogeneous and non-homogeneous) and spherically symmetric trees which includes homogeneous and \(k-\)periodic trees. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081058250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081058250</sourcerecordid><originalsourceid>FETCH-proquest_journals_20810582503</originalsourceid><addsrcrecordid>eNqNissKwjAURIMgWLT_EHBdSG-Mdi8-Vq4KLktor7Qlj5qbLvr3RvADXM2cM7NiGUhZFtUBYMNyolEIAccTKCUz9qh75K13yCcMrTc6Dt5x6zs0PJWbNtG74qkjJdKu-0qaegxDq41ZOC3WYkzEY0CkHVu_tCHMf7ll--ulPt-LKfj3jBSb0c_BpakBUZVCVaCE_O_1AeTOPmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081058250</pqid></control><display><type>article</type><title>The cone percolation model on Galton-Watson and on spherically symmetric trees</title><source>Free E- Journals</source><creator>Valdivino Vargas Junior ; Fábio Prates Machado ; Krishnamurthi Ravishankar</creator><creatorcontrib>Valdivino Vargas Junior ; Fábio Prates Machado ; Krishnamurthi Ravishankar</creatorcontrib><description>We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the probability of that event, according to the distribution of the random variables that defines the radius of influence of each individual. We work with Galton-Watson branching trees (homogeneous and non-homogeneous) and spherically symmetric trees which includes homogeneous and \(k-\)periodic trees.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Branching (mathematics) ; Markov processes ; Percolation theory ; Random variables ; Trees (mathematics) ; Upper bounds</subject><ispartof>arXiv.org, 2016-11</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Valdivino Vargas Junior</creatorcontrib><creatorcontrib>Fábio Prates Machado</creatorcontrib><creatorcontrib>Krishnamurthi Ravishankar</creatorcontrib><title>The cone percolation model on Galton-Watson and on spherically symmetric trees</title><title>arXiv.org</title><description>We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the probability of that event, according to the distribution of the random variables that defines the radius of influence of each individual. We work with Galton-Watson branching trees (homogeneous and non-homogeneous) and spherically symmetric trees which includes homogeneous and \(k-\)periodic trees.</description><subject>Apexes</subject><subject>Branching (mathematics)</subject><subject>Markov processes</subject><subject>Percolation theory</subject><subject>Random variables</subject><subject>Trees (mathematics)</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAURIMgWLT_EHBdSG-Mdi8-Vq4KLktor7Qlj5qbLvr3RvADXM2cM7NiGUhZFtUBYMNyolEIAccTKCUz9qh75K13yCcMrTc6Dt5x6zs0PJWbNtG74qkjJdKu-0qaegxDq41ZOC3WYkzEY0CkHVu_tCHMf7ll--ulPt-LKfj3jBSb0c_BpakBUZVCVaCE_O_1AeTOPmM</recordid><startdate>20161110</startdate><enddate>20161110</enddate><creator>Valdivino Vargas Junior</creator><creator>Fábio Prates Machado</creator><creator>Krishnamurthi Ravishankar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161110</creationdate><title>The cone percolation model on Galton-Watson and on spherically symmetric trees</title><author>Valdivino Vargas Junior ; Fábio Prates Machado ; Krishnamurthi Ravishankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20810582503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Apexes</topic><topic>Branching (mathematics)</topic><topic>Markov processes</topic><topic>Percolation theory</topic><topic>Random variables</topic><topic>Trees (mathematics)</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Valdivino Vargas Junior</creatorcontrib><creatorcontrib>Fábio Prates Machado</creatorcontrib><creatorcontrib>Krishnamurthi Ravishankar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valdivino Vargas Junior</au><au>Fábio Prates Machado</au><au>Krishnamurthi Ravishankar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The cone percolation model on Galton-Watson and on spherically symmetric trees</atitle><jtitle>arXiv.org</jtitle><date>2016-11-10</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the probability of that event, according to the distribution of the random variables that defines the radius of influence of each individual. We work with Galton-Watson branching trees (homogeneous and non-homogeneous) and spherically symmetric trees which includes homogeneous and \(k-\)periodic trees.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081058250 |
source | Free E- Journals |
subjects | Apexes Branching (mathematics) Markov processes Percolation theory Random variables Trees (mathematics) Upper bounds |
title | The cone percolation model on Galton-Watson and on spherically symmetric trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20cone%20percolation%20model%20on%20Galton-Watson%20and%20on%20spherically%20symmetric%20trees&rft.jtitle=arXiv.org&rft.au=Valdivino%20Vargas%20Junior&rft.date=2016-11-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081058250%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081058250&rft_id=info:pmid/&rfr_iscdi=true |