The cone percolation model on Galton-Watson and on spherically symmetric trees

We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-11
Hauptverfasser: Valdivino Vargas Junior, Fábio Prates Machado, Krishnamurthi Ravishankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Valdivino Vargas Junior
Fábio Prates Machado
Krishnamurthi Ravishankar
description We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the probability of that event, according to the distribution of the random variables that defines the radius of influence of each individual. We work with Galton-Watson branching trees (homogeneous and non-homogeneous) and spherically symmetric trees which includes homogeneous and \(k-\)periodic trees.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081058250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081058250</sourcerecordid><originalsourceid>FETCH-proquest_journals_20810582503</originalsourceid><addsrcrecordid>eNqNissKwjAURIMgWLT_EHBdSG-Mdi8-Vq4KLktor7Qlj5qbLvr3RvADXM2cM7NiGUhZFtUBYMNyolEIAccTKCUz9qh75K13yCcMrTc6Dt5x6zs0PJWbNtG74qkjJdKu-0qaegxDq41ZOC3WYkzEY0CkHVu_tCHMf7ll--ulPt-LKfj3jBSb0c_BpakBUZVCVaCE_O_1AeTOPmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081058250</pqid></control><display><type>article</type><title>The cone percolation model on Galton-Watson and on spherically symmetric trees</title><source>Free E- Journals</source><creator>Valdivino Vargas Junior ; Fábio Prates Machado ; Krishnamurthi Ravishankar</creator><creatorcontrib>Valdivino Vargas Junior ; Fábio Prates Machado ; Krishnamurthi Ravishankar</creatorcontrib><description>We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the probability of that event, according to the distribution of the random variables that defines the radius of influence of each individual. We work with Galton-Watson branching trees (homogeneous and non-homogeneous) and spherically symmetric trees which includes homogeneous and \(k-\)periodic trees.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Branching (mathematics) ; Markov processes ; Percolation theory ; Random variables ; Trees (mathematics) ; Upper bounds</subject><ispartof>arXiv.org, 2016-11</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Valdivino Vargas Junior</creatorcontrib><creatorcontrib>Fábio Prates Machado</creatorcontrib><creatorcontrib>Krishnamurthi Ravishankar</creatorcontrib><title>The cone percolation model on Galton-Watson and on spherically symmetric trees</title><title>arXiv.org</title><description>We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the probability of that event, according to the distribution of the random variables that defines the radius of influence of each individual. We work with Galton-Watson branching trees (homogeneous and non-homogeneous) and spherically symmetric trees which includes homogeneous and \(k-\)periodic trees.</description><subject>Apexes</subject><subject>Branching (mathematics)</subject><subject>Markov processes</subject><subject>Percolation theory</subject><subject>Random variables</subject><subject>Trees (mathematics)</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAURIMgWLT_EHBdSG-Mdi8-Vq4KLktor7Qlj5qbLvr3RvADXM2cM7NiGUhZFtUBYMNyolEIAccTKCUz9qh75K13yCcMrTc6Dt5x6zs0PJWbNtG74qkjJdKu-0qaegxDq41ZOC3WYkzEY0CkHVu_tCHMf7ll--ulPt-LKfj3jBSb0c_BpakBUZVCVaCE_O_1AeTOPmM</recordid><startdate>20161110</startdate><enddate>20161110</enddate><creator>Valdivino Vargas Junior</creator><creator>Fábio Prates Machado</creator><creator>Krishnamurthi Ravishankar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161110</creationdate><title>The cone percolation model on Galton-Watson and on spherically symmetric trees</title><author>Valdivino Vargas Junior ; Fábio Prates Machado ; Krishnamurthi Ravishankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20810582503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Apexes</topic><topic>Branching (mathematics)</topic><topic>Markov processes</topic><topic>Percolation theory</topic><topic>Random variables</topic><topic>Trees (mathematics)</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Valdivino Vargas Junior</creatorcontrib><creatorcontrib>Fábio Prates Machado</creatorcontrib><creatorcontrib>Krishnamurthi Ravishankar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valdivino Vargas Junior</au><au>Fábio Prates Machado</au><au>Krishnamurthi Ravishankar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The cone percolation model on Galton-Watson and on spherically symmetric trees</atitle><jtitle>arXiv.org</jtitle><date>2016-11-10</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the probability of that event, according to the distribution of the random variables that defines the radius of influence of each individual. We work with Galton-Watson branching trees (homogeneous and non-homogeneous) and spherically symmetric trees which includes homogeneous and \(k-\)periodic trees.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081058250
source Free E- Journals
subjects Apexes
Branching (mathematics)
Markov processes
Percolation theory
Random variables
Trees (mathematics)
Upper bounds
title The cone percolation model on Galton-Watson and on spherically symmetric trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20cone%20percolation%20model%20on%20Galton-Watson%20and%20on%20spherically%20symmetric%20trees&rft.jtitle=arXiv.org&rft.au=Valdivino%20Vargas%20Junior&rft.date=2016-11-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081058250%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081058250&rft_id=info:pmid/&rfr_iscdi=true