On the Selmer group attached to a modular form and an algebraic Hecke character

We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin's machinery explained by Gross while the key object of the Euler system, the generalized Heegner cycles, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-10
1. Verfasser: Elias, Yara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Elias, Yara
description We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin's machinery explained by Gross while the key object of the Euler system, the generalized Heegner cycles, were first considered by Bertolini, Darmon and Prasanna.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081035694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081035694</sourcerecordid><originalsourceid>FETCH-proquest_journals_20810356943</originalsourceid><addsrcrecordid>eNqNirEOgjAUABsTE4nyDy9xJiktIM5Gw8agO3mWB4hA8bX8vwx-gMPlhruNCJTWcZQnSu1E6FwvpVTZSaWpDkRZTuA7gjsNIzG0bJcZ0Hs0HdXgLSCMtl4GZGgsj4BTvQI4tPRkfBkoyLwJTIeMxhMfxLbBwVH4814cb9fHpYhmtp-FnK96u_C0pkrJPJY6zc6J_u_6AprJPaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081035694</pqid></control><display><type>article</type><title>On the Selmer group attached to a modular form and an algebraic Hecke character</title><source>Free E- Journals</source><creator>Elias, Yara</creator><creatorcontrib>Elias, Yara</creatorcontrib><description>We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin's machinery explained by Gross while the key object of the Euler system, the generalized Heegner cycles, were first considered by Bertolini, Darmon and Prasanna.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Analytic functions ; Automotive parts ; Modular construction</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Elias, Yara</creatorcontrib><title>On the Selmer group attached to a modular form and an algebraic Hecke character</title><title>arXiv.org</title><description>We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin's machinery explained by Gross while the key object of the Euler system, the generalized Heegner cycles, were first considered by Bertolini, Darmon and Prasanna.</description><subject>Algebra</subject><subject>Analytic functions</subject><subject>Automotive parts</subject><subject>Modular construction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEOgjAUABsTE4nyDy9xJiktIM5Gw8agO3mWB4hA8bX8vwx-gMPlhruNCJTWcZQnSu1E6FwvpVTZSaWpDkRZTuA7gjsNIzG0bJcZ0Hs0HdXgLSCMtl4GZGgsj4BTvQI4tPRkfBkoyLwJTIeMxhMfxLbBwVH4814cb9fHpYhmtp-FnK96u_C0pkrJPJY6zc6J_u_6AprJPaY</recordid><startdate>20161002</startdate><enddate>20161002</enddate><creator>Elias, Yara</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161002</creationdate><title>On the Selmer group attached to a modular form and an algebraic Hecke character</title><author>Elias, Yara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20810356943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Analytic functions</topic><topic>Automotive parts</topic><topic>Modular construction</topic><toplevel>online_resources</toplevel><creatorcontrib>Elias, Yara</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elias, Yara</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Selmer group attached to a modular form and an algebraic Hecke character</atitle><jtitle>arXiv.org</jtitle><date>2016-10-02</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin's machinery explained by Gross while the key object of the Euler system, the generalized Heegner cycles, were first considered by Bertolini, Darmon and Prasanna.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081035694
source Free E- Journals
subjects Algebra
Analytic functions
Automotive parts
Modular construction
title On the Selmer group attached to a modular form and an algebraic Hecke character
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Selmer%20group%20attached%20to%20a%20modular%20form%20and%20an%20algebraic%20Hecke%20character&rft.jtitle=arXiv.org&rft.au=Elias,%20Yara&rft.date=2016-10-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081035694%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081035694&rft_id=info:pmid/&rfr_iscdi=true