The kissing polynomials and their Hankel determinants

In this paper we investigate algebraic, differential and asymptotic properties of polynomials \(p_n(x)\) that are orthogonal with respect to the complex oscillatory weight \(w(x)=e^{i\omega x}\) on the interval \([-1,1]\), where \(\omega>0\). We also investigate related quantities such as Hankel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-12
Hauptverfasser: Celsus, Andrew F, Deaño, Alfredo, Huybrechs, Daan, Iserles, Arieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Celsus, Andrew F
Deaño, Alfredo
Huybrechs, Daan
Iserles, Arieh
description In this paper we investigate algebraic, differential and asymptotic properties of polynomials \(p_n(x)\) that are orthogonal with respect to the complex oscillatory weight \(w(x)=e^{i\omega x}\) on the interval \([-1,1]\), where \(\omega>0\). We also investigate related quantities such as Hankel determinants and recurrence coefficients. We prove existence of the polynomials \(p_{2n}(x)\) for all values of \(\omega>0\), as well as degeneracy of \(p_{2n+1}(x)\) at certain values of \(\omega\) (called kissing points). We obtain detailed asymptotic information as \(\omega\to\infty\), using recent theory of multivariate highly oscillatory integrals, and we complete the analysis with the study of complex zeros of Hankel determinants, using the large \(\omega\) asymptotics obtained before.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081032096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081032096</sourcerecordid><originalsourceid>FETCH-proquest_journals_20810320963</originalsourceid><addsrcrecordid>eNqNyk0OgjAQQOHGxESi3KGJa5IytYhro-EA7EkTRig_U-yUhbeXhQdw9Rbv24kEtM6z8gJwECnzoJSC4grG6ESYukc5OmZHnVz89CE_OzuxtNTK2KMLsrI04iRbjBhmR5Yin8T-tSFMfz2K8_NR36tsCf69Isdm8GugbTWgylxpULdC_6e-shw1OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081032096</pqid></control><display><type>article</type><title>The kissing polynomials and their Hankel determinants</title><source>Freely Accessible Journals</source><creator>Celsus, Andrew F ; Deaño, Alfredo ; Huybrechs, Daan ; Iserles, Arieh</creator><creatorcontrib>Celsus, Andrew F ; Deaño, Alfredo ; Huybrechs, Daan ; Iserles, Arieh</creatorcontrib><description>In this paper we investigate algebraic, differential and asymptotic properties of polynomials \(p_n(x)\) that are orthogonal with respect to the complex oscillatory weight \(w(x)=e^{i\omega x}\) on the interval \([-1,1]\), where \(\omega&gt;0\). We also investigate related quantities such as Hankel determinants and recurrence coefficients. We prove existence of the polynomials \(p_{2n}(x)\) for all values of \(\omega&gt;0\), as well as degeneracy of \(p_{2n+1}(x)\) at certain values of \(\omega\) (called kissing points). We obtain detailed asymptotic information as \(\omega\to\infty\), using recent theory of multivariate highly oscillatory integrals, and we complete the analysis with the study of complex zeros of Hankel determinants, using the large \(\omega\) asymptotics obtained before.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic series ; Determinants ; Integrals ; Polynomials ; Roots ; Weighting functions</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Celsus, Andrew F</creatorcontrib><creatorcontrib>Deaño, Alfredo</creatorcontrib><creatorcontrib>Huybrechs, Daan</creatorcontrib><creatorcontrib>Iserles, Arieh</creatorcontrib><title>The kissing polynomials and their Hankel determinants</title><title>arXiv.org</title><description>In this paper we investigate algebraic, differential and asymptotic properties of polynomials \(p_n(x)\) that are orthogonal with respect to the complex oscillatory weight \(w(x)=e^{i\omega x}\) on the interval \([-1,1]\), where \(\omega&gt;0\). We also investigate related quantities such as Hankel determinants and recurrence coefficients. We prove existence of the polynomials \(p_{2n}(x)\) for all values of \(\omega&gt;0\), as well as degeneracy of \(p_{2n+1}(x)\) at certain values of \(\omega\) (called kissing points). We obtain detailed asymptotic information as \(\omega\to\infty\), using recent theory of multivariate highly oscillatory integrals, and we complete the analysis with the study of complex zeros of Hankel determinants, using the large \(\omega\) asymptotics obtained before.</description><subject>Asymptotic series</subject><subject>Determinants</subject><subject>Integrals</subject><subject>Polynomials</subject><subject>Roots</subject><subject>Weighting functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyk0OgjAQQOHGxESi3KGJa5IytYhro-EA7EkTRig_U-yUhbeXhQdw9Rbv24kEtM6z8gJwECnzoJSC4grG6ESYukc5OmZHnVz89CE_OzuxtNTK2KMLsrI04iRbjBhmR5Yin8T-tSFMfz2K8_NR36tsCf69Isdm8GugbTWgylxpULdC_6e-shw1OA</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Celsus, Andrew F</creator><creator>Deaño, Alfredo</creator><creator>Huybrechs, Daan</creator><creator>Iserles, Arieh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20211206</creationdate><title>The kissing polynomials and their Hankel determinants</title><author>Celsus, Andrew F ; Deaño, Alfredo ; Huybrechs, Daan ; Iserles, Arieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20810320963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic series</topic><topic>Determinants</topic><topic>Integrals</topic><topic>Polynomials</topic><topic>Roots</topic><topic>Weighting functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Celsus, Andrew F</creatorcontrib><creatorcontrib>Deaño, Alfredo</creatorcontrib><creatorcontrib>Huybrechs, Daan</creatorcontrib><creatorcontrib>Iserles, Arieh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celsus, Andrew F</au><au>Deaño, Alfredo</au><au>Huybrechs, Daan</au><au>Iserles, Arieh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The kissing polynomials and their Hankel determinants</atitle><jtitle>arXiv.org</jtitle><date>2021-12-06</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper we investigate algebraic, differential and asymptotic properties of polynomials \(p_n(x)\) that are orthogonal with respect to the complex oscillatory weight \(w(x)=e^{i\omega x}\) on the interval \([-1,1]\), where \(\omega&gt;0\). We also investigate related quantities such as Hankel determinants and recurrence coefficients. We prove existence of the polynomials \(p_{2n}(x)\) for all values of \(\omega&gt;0\), as well as degeneracy of \(p_{2n+1}(x)\) at certain values of \(\omega\) (called kissing points). We obtain detailed asymptotic information as \(\omega\to\infty\), using recent theory of multivariate highly oscillatory integrals, and we complete the analysis with the study of complex zeros of Hankel determinants, using the large \(\omega\) asymptotics obtained before.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081032096
source Freely Accessible Journals
subjects Asymptotic series
Determinants
Integrals
Polynomials
Roots
Weighting functions
title The kissing polynomials and their Hankel determinants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20kissing%20polynomials%20and%20their%20Hankel%20determinants&rft.jtitle=arXiv.org&rft.au=Celsus,%20Andrew%20F&rft.date=2021-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081032096%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081032096&rft_id=info:pmid/&rfr_iscdi=true