The kissing polynomials and their Hankel determinants
In this paper we investigate algebraic, differential and asymptotic properties of polynomials \(p_n(x)\) that are orthogonal with respect to the complex oscillatory weight \(w(x)=e^{i\omega x}\) on the interval \([-1,1]\), where \(\omega>0\). We also investigate related quantities such as Hankel...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Celsus, Andrew F Deaño, Alfredo Huybrechs, Daan Iserles, Arieh |
description | In this paper we investigate algebraic, differential and asymptotic properties of polynomials \(p_n(x)\) that are orthogonal with respect to the complex oscillatory weight \(w(x)=e^{i\omega x}\) on the interval \([-1,1]\), where \(\omega>0\). We also investigate related quantities such as Hankel determinants and recurrence coefficients. We prove existence of the polynomials \(p_{2n}(x)\) for all values of \(\omega>0\), as well as degeneracy of \(p_{2n+1}(x)\) at certain values of \(\omega\) (called kissing points). We obtain detailed asymptotic information as \(\omega\to\infty\), using recent theory of multivariate highly oscillatory integrals, and we complete the analysis with the study of complex zeros of Hankel determinants, using the large \(\omega\) asymptotics obtained before. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081032096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081032096</sourcerecordid><originalsourceid>FETCH-proquest_journals_20810320963</originalsourceid><addsrcrecordid>eNqNyk0OgjAQQOHGxESi3KGJa5IytYhro-EA7EkTRig_U-yUhbeXhQdw9Rbv24kEtM6z8gJwECnzoJSC4grG6ESYukc5OmZHnVz89CE_OzuxtNTK2KMLsrI04iRbjBhmR5Yin8T-tSFMfz2K8_NR36tsCf69Isdm8GugbTWgylxpULdC_6e-shw1OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081032096</pqid></control><display><type>article</type><title>The kissing polynomials and their Hankel determinants</title><source>Freely Accessible Journals</source><creator>Celsus, Andrew F ; Deaño, Alfredo ; Huybrechs, Daan ; Iserles, Arieh</creator><creatorcontrib>Celsus, Andrew F ; Deaño, Alfredo ; Huybrechs, Daan ; Iserles, Arieh</creatorcontrib><description>In this paper we investigate algebraic, differential and asymptotic properties of polynomials \(p_n(x)\) that are orthogonal with respect to the complex oscillatory weight \(w(x)=e^{i\omega x}\) on the interval \([-1,1]\), where \(\omega>0\). We also investigate related quantities such as Hankel determinants and recurrence coefficients. We prove existence of the polynomials \(p_{2n}(x)\) for all values of \(\omega>0\), as well as degeneracy of \(p_{2n+1}(x)\) at certain values of \(\omega\) (called kissing points). We obtain detailed asymptotic information as \(\omega\to\infty\), using recent theory of multivariate highly oscillatory integrals, and we complete the analysis with the study of complex zeros of Hankel determinants, using the large \(\omega\) asymptotics obtained before.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic series ; Determinants ; Integrals ; Polynomials ; Roots ; Weighting functions</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Celsus, Andrew F</creatorcontrib><creatorcontrib>Deaño, Alfredo</creatorcontrib><creatorcontrib>Huybrechs, Daan</creatorcontrib><creatorcontrib>Iserles, Arieh</creatorcontrib><title>The kissing polynomials and their Hankel determinants</title><title>arXiv.org</title><description>In this paper we investigate algebraic, differential and asymptotic properties of polynomials \(p_n(x)\) that are orthogonal with respect to the complex oscillatory weight \(w(x)=e^{i\omega x}\) on the interval \([-1,1]\), where \(\omega>0\). We also investigate related quantities such as Hankel determinants and recurrence coefficients. We prove existence of the polynomials \(p_{2n}(x)\) for all values of \(\omega>0\), as well as degeneracy of \(p_{2n+1}(x)\) at certain values of \(\omega\) (called kissing points). We obtain detailed asymptotic information as \(\omega\to\infty\), using recent theory of multivariate highly oscillatory integrals, and we complete the analysis with the study of complex zeros of Hankel determinants, using the large \(\omega\) asymptotics obtained before.</description><subject>Asymptotic series</subject><subject>Determinants</subject><subject>Integrals</subject><subject>Polynomials</subject><subject>Roots</subject><subject>Weighting functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyk0OgjAQQOHGxESi3KGJa5IytYhro-EA7EkTRig_U-yUhbeXhQdw9Rbv24kEtM6z8gJwECnzoJSC4grG6ESYukc5OmZHnVz89CE_OzuxtNTK2KMLsrI04iRbjBhmR5Yin8T-tSFMfz2K8_NR36tsCf69Isdm8GugbTWgylxpULdC_6e-shw1OA</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Celsus, Andrew F</creator><creator>Deaño, Alfredo</creator><creator>Huybrechs, Daan</creator><creator>Iserles, Arieh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20211206</creationdate><title>The kissing polynomials and their Hankel determinants</title><author>Celsus, Andrew F ; Deaño, Alfredo ; Huybrechs, Daan ; Iserles, Arieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20810320963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic series</topic><topic>Determinants</topic><topic>Integrals</topic><topic>Polynomials</topic><topic>Roots</topic><topic>Weighting functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Celsus, Andrew F</creatorcontrib><creatorcontrib>Deaño, Alfredo</creatorcontrib><creatorcontrib>Huybrechs, Daan</creatorcontrib><creatorcontrib>Iserles, Arieh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celsus, Andrew F</au><au>Deaño, Alfredo</au><au>Huybrechs, Daan</au><au>Iserles, Arieh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The kissing polynomials and their Hankel determinants</atitle><jtitle>arXiv.org</jtitle><date>2021-12-06</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper we investigate algebraic, differential and asymptotic properties of polynomials \(p_n(x)\) that are orthogonal with respect to the complex oscillatory weight \(w(x)=e^{i\omega x}\) on the interval \([-1,1]\), where \(\omega>0\). We also investigate related quantities such as Hankel determinants and recurrence coefficients. We prove existence of the polynomials \(p_{2n}(x)\) for all values of \(\omega>0\), as well as degeneracy of \(p_{2n+1}(x)\) at certain values of \(\omega\) (called kissing points). We obtain detailed asymptotic information as \(\omega\to\infty\), using recent theory of multivariate highly oscillatory integrals, and we complete the analysis with the study of complex zeros of Hankel determinants, using the large \(\omega\) asymptotics obtained before.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081032096 |
source | Freely Accessible Journals |
subjects | Asymptotic series Determinants Integrals Polynomials Roots Weighting functions |
title | The kissing polynomials and their Hankel determinants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20kissing%20polynomials%20and%20their%20Hankel%20determinants&rft.jtitle=arXiv.org&rft.au=Celsus,%20Andrew%20F&rft.date=2021-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081032096%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081032096&rft_id=info:pmid/&rfr_iscdi=true |