Directional complexity and entropy for lift mappings
We introduce and study the notion of a directional complexity and entropy for maps of degree 1 on the circle. For piecewise affine Markov maps we use symbolic dynamics to relate this complexity to the symbolic complexity. We apply a combinatorial machinery to obtain exact formulas for the directiona...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Afraimovich, V Courbage, M Glebsky, L |
description | We introduce and study the notion of a directional complexity and entropy for maps of degree 1 on the circle. For piecewise affine Markov maps we use symbolic dynamics to relate this complexity to the symbolic complexity. We apply a combinatorial machinery to obtain exact formulas for the directional entropy, to find the maximal directional entropy, and to show that it equals the topological entropy of the map. Keywords: Rotation interval, Space-time window, Directional complexity, Directional entropy; |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080988047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080988047</sourcerecordid><originalsourceid>FETCH-proquest_journals_20809880473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwccksSk0uyczPS8xRSM7PLchJrcgsqVRIzEtRSM0rKcovqFRIyy9SyMlMK1HITSwoyMxLL-ZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRUATi-ONDCwMLC0sDEzMjYlTBQCX-zUq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080988047</pqid></control><display><type>article</type><title>Directional complexity and entropy for lift mappings</title><source>Free E- Journals</source><creator>Afraimovich, V ; Courbage, M ; Glebsky, L</creator><creatorcontrib>Afraimovich, V ; Courbage, M ; Glebsky, L</creatorcontrib><description>We introduce and study the notion of a directional complexity and entropy for maps of degree 1 on the circle. For piecewise affine Markov maps we use symbolic dynamics to relate this complexity to the symbolic complexity. We apply a combinatorial machinery to obtain exact formulas for the directional entropy, to find the maximal directional entropy, and to show that it equals the topological entropy of the map. Keywords: Rotation interval, Space-time window, Directional complexity, Directional entropy;</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Complexity ; Entropy ; Markov processes ; Windows (intervals)</subject><ispartof>arXiv.org, 2016-09</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Afraimovich, V</creatorcontrib><creatorcontrib>Courbage, M</creatorcontrib><creatorcontrib>Glebsky, L</creatorcontrib><title>Directional complexity and entropy for lift mappings</title><title>arXiv.org</title><description>We introduce and study the notion of a directional complexity and entropy for maps of degree 1 on the circle. For piecewise affine Markov maps we use symbolic dynamics to relate this complexity to the symbolic complexity. We apply a combinatorial machinery to obtain exact formulas for the directional entropy, to find the maximal directional entropy, and to show that it equals the topological entropy of the map. Keywords: Rotation interval, Space-time window, Directional complexity, Directional entropy;</description><subject>Combinatorial analysis</subject><subject>Complexity</subject><subject>Entropy</subject><subject>Markov processes</subject><subject>Windows (intervals)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwccksSk0uyczPS8xRSM7PLchJrcgsqVRIzEtRSM0rKcovqFRIyy9SyMlMK1HITSwoyMxLL-ZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRUATi-ONDCwMLC0sDEzMjYlTBQCX-zUq</recordid><startdate>20160908</startdate><enddate>20160908</enddate><creator>Afraimovich, V</creator><creator>Courbage, M</creator><creator>Glebsky, L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160908</creationdate><title>Directional complexity and entropy for lift mappings</title><author>Afraimovich, V ; Courbage, M ; Glebsky, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20809880473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Combinatorial analysis</topic><topic>Complexity</topic><topic>Entropy</topic><topic>Markov processes</topic><topic>Windows (intervals)</topic><toplevel>online_resources</toplevel><creatorcontrib>Afraimovich, V</creatorcontrib><creatorcontrib>Courbage, M</creatorcontrib><creatorcontrib>Glebsky, L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afraimovich, V</au><au>Courbage, M</au><au>Glebsky, L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Directional complexity and entropy for lift mappings</atitle><jtitle>arXiv.org</jtitle><date>2016-09-08</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We introduce and study the notion of a directional complexity and entropy for maps of degree 1 on the circle. For piecewise affine Markov maps we use symbolic dynamics to relate this complexity to the symbolic complexity. We apply a combinatorial machinery to obtain exact formulas for the directional entropy, to find the maximal directional entropy, and to show that it equals the topological entropy of the map. Keywords: Rotation interval, Space-time window, Directional complexity, Directional entropy;</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080988047 |
source | Free E- Journals |
subjects | Combinatorial analysis Complexity Entropy Markov processes Windows (intervals) |
title | Directional complexity and entropy for lift mappings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Directional%20complexity%20and%20entropy%20for%20lift%20mappings&rft.jtitle=arXiv.org&rft.au=Afraimovich,%20V&rft.date=2016-09-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080988047%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080988047&rft_id=info:pmid/&rfr_iscdi=true |