Lattice Diagram Polynomials and Extended Pieri Rules
The lattice cell in the \({i+1}^{st}\) row and \({j+1}^{st}\) column of the positive quadrant of the plane is denoted \((i,j)\). If \(\mu\) is a partition of \(n+1\), we denote by \(\mu/ij\) the diagram obtained by removing the cell \((i,j)\) from the (French) Ferrers diagram of \(\mu\). We set \(\D...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1998-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bergeron, F Bergeron, N Garsia, A M Haiman, M Tesler, G |
description | The lattice cell in the \({i+1}^{st}\) row and \({j+1}^{st}\) column of the positive quadrant of the plane is denoted \((i,j)\). If \(\mu\) is a partition of \(n+1\), we denote by \(\mu/ij\) the diagram obtained by removing the cell \((i,j)\) from the (French) Ferrers diagram of \(\mu\). We set \(\Delta_{\mu/ij}=\det \| x_i^{p_j}y_i^{q_j} \|_{i,j=1}^n\), where \((p_1,q_1),... ,(p_n,q_n)\) are the cells of \(\mu/ij\), and let \({\bf M}_{\mu/ij}\) be the linear span of the partial derivatives of \(\Delta_{\mu/ij}\). The bihomogeneity of \(\Delta_{\mu/ij}\) and its alternating nature under the diagonal action of \(S_n\) gives \({\bf M}_{\mu/ij}\) the structure of a bigraded \(S_n\)-module. We conjecture that \({\bf M}_{\mu/ij}\) is always a direct sum of \(k\) left regular representations of \(S_n\), where \(k\) is the number of cells that are weakly north and east of \((i,j)\) in \(\mu\). We also make a number of conjectures describing the precise nature of the bivariate Frobenius characteristic of \({\bf M}_{\mu/ij}\) in terms of the theory of Macdonald polynomials. On the validity of these conjectures, we derive a number of surprising identities. In particular, we obtain a representation theoretical interpretation of the coefficients appearing in some Macdonald Pieri Rules. |
doi_str_mv | 10.48550/arxiv.9809126 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080941394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080941394</sourcerecordid><originalsourceid>FETCH-proquest_journals_20809413943</originalsourceid><addsrcrecordid>eNqNjr0OgjAYABsTE4myOjdxBr_-IcyKcXAgxp00Uk0JtNoWg28vgw_gdMPdcAitCaQ8FwK20o36nRY5FIRmMxRRxkiSc0oXKPa-BQCa7agQLEL8LEPQN4UPWj6c7HFlu4-xvZadx9I0uByDMo1qcKWV0_gydMqv0Pw-eRX_uESbY3ndn5Kns69B-VC3dnBmUjWF6YITVnD2X_UFThY56A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080941394</pqid></control><display><type>article</type><title>Lattice Diagram Polynomials and Extended Pieri Rules</title><source>Free E- Journals</source><creator>Bergeron, F ; Bergeron, N ; Garsia, A M ; Haiman, M ; Tesler, G</creator><creatorcontrib>Bergeron, F ; Bergeron, N ; Garsia, A M ; Haiman, M ; Tesler, G</creatorcontrib><description>The lattice cell in the \({i+1}^{st}\) row and \({j+1}^{st}\) column of the positive quadrant of the plane is denoted \((i,j)\). If \(\mu\) is a partition of \(n+1\), we denote by \(\mu/ij\) the diagram obtained by removing the cell \((i,j)\) from the (French) Ferrers diagram of \(\mu\). We set \(\Delta_{\mu/ij}=\det \| x_i^{p_j}y_i^{q_j} \|_{i,j=1}^n\), where \((p_1,q_1),... ,(p_n,q_n)\) are the cells of \(\mu/ij\), and let \({\bf M}_{\mu/ij}\) be the linear span of the partial derivatives of \(\Delta_{\mu/ij}\). The bihomogeneity of \(\Delta_{\mu/ij}\) and its alternating nature under the diagonal action of \(S_n\) gives \({\bf M}_{\mu/ij}\) the structure of a bigraded \(S_n\)-module. We conjecture that \({\bf M}_{\mu/ij}\) is always a direct sum of \(k\) left regular representations of \(S_n\), where \(k\) is the number of cells that are weakly north and east of \((i,j)\) in \(\mu\). We also make a number of conjectures describing the precise nature of the bivariate Frobenius characteristic of \({\bf M}_{\mu/ij}\) in terms of the theory of Macdonald polynomials. On the validity of these conjectures, we derive a number of surprising identities. In particular, we obtain a representation theoretical interpretation of the coefficients appearing in some Macdonald Pieri Rules.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9809126</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bivariate analysis ; Polynomials ; Representations</subject><ispartof>arXiv.org, 1998-09</ispartof><rights>1998. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Bergeron, F</creatorcontrib><creatorcontrib>Bergeron, N</creatorcontrib><creatorcontrib>Garsia, A M</creatorcontrib><creatorcontrib>Haiman, M</creatorcontrib><creatorcontrib>Tesler, G</creatorcontrib><title>Lattice Diagram Polynomials and Extended Pieri Rules</title><title>arXiv.org</title><description>The lattice cell in the \({i+1}^{st}\) row and \({j+1}^{st}\) column of the positive quadrant of the plane is denoted \((i,j)\). If \(\mu\) is a partition of \(n+1\), we denote by \(\mu/ij\) the diagram obtained by removing the cell \((i,j)\) from the (French) Ferrers diagram of \(\mu\). We set \(\Delta_{\mu/ij}=\det \| x_i^{p_j}y_i^{q_j} \|_{i,j=1}^n\), where \((p_1,q_1),... ,(p_n,q_n)\) are the cells of \(\mu/ij\), and let \({\bf M}_{\mu/ij}\) be the linear span of the partial derivatives of \(\Delta_{\mu/ij}\). The bihomogeneity of \(\Delta_{\mu/ij}\) and its alternating nature under the diagonal action of \(S_n\) gives \({\bf M}_{\mu/ij}\) the structure of a bigraded \(S_n\)-module. We conjecture that \({\bf M}_{\mu/ij}\) is always a direct sum of \(k\) left regular representations of \(S_n\), where \(k\) is the number of cells that are weakly north and east of \((i,j)\) in \(\mu\). We also make a number of conjectures describing the precise nature of the bivariate Frobenius characteristic of \({\bf M}_{\mu/ij}\) in terms of the theory of Macdonald polynomials. On the validity of these conjectures, we derive a number of surprising identities. In particular, we obtain a representation theoretical interpretation of the coefficients appearing in some Macdonald Pieri Rules.</description><subject>Bivariate analysis</subject><subject>Polynomials</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjr0OgjAYABsTE4myOjdxBr_-IcyKcXAgxp00Uk0JtNoWg28vgw_gdMPdcAitCaQ8FwK20o36nRY5FIRmMxRRxkiSc0oXKPa-BQCa7agQLEL8LEPQN4UPWj6c7HFlu4-xvZadx9I0uByDMo1qcKWV0_gydMqv0Pw-eRX_uESbY3ndn5Kns69B-VC3dnBmUjWF6YITVnD2X_UFThY56A</recordid><startdate>19980922</startdate><enddate>19980922</enddate><creator>Bergeron, F</creator><creator>Bergeron, N</creator><creator>Garsia, A M</creator><creator>Haiman, M</creator><creator>Tesler, G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19980922</creationdate><title>Lattice Diagram Polynomials and Extended Pieri Rules</title><author>Bergeron, F ; Bergeron, N ; Garsia, A M ; Haiman, M ; Tesler, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20809413943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bivariate analysis</topic><topic>Polynomials</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Bergeron, F</creatorcontrib><creatorcontrib>Bergeron, N</creatorcontrib><creatorcontrib>Garsia, A M</creatorcontrib><creatorcontrib>Haiman, M</creatorcontrib><creatorcontrib>Tesler, G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergeron, F</au><au>Bergeron, N</au><au>Garsia, A M</au><au>Haiman, M</au><au>Tesler, G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Lattice Diagram Polynomials and Extended Pieri Rules</atitle><jtitle>arXiv.org</jtitle><date>1998-09-22</date><risdate>1998</risdate><eissn>2331-8422</eissn><abstract>The lattice cell in the \({i+1}^{st}\) row and \({j+1}^{st}\) column of the positive quadrant of the plane is denoted \((i,j)\). If \(\mu\) is a partition of \(n+1\), we denote by \(\mu/ij\) the diagram obtained by removing the cell \((i,j)\) from the (French) Ferrers diagram of \(\mu\). We set \(\Delta_{\mu/ij}=\det \| x_i^{p_j}y_i^{q_j} \|_{i,j=1}^n\), where \((p_1,q_1),... ,(p_n,q_n)\) are the cells of \(\mu/ij\), and let \({\bf M}_{\mu/ij}\) be the linear span of the partial derivatives of \(\Delta_{\mu/ij}\). The bihomogeneity of \(\Delta_{\mu/ij}\) and its alternating nature under the diagonal action of \(S_n\) gives \({\bf M}_{\mu/ij}\) the structure of a bigraded \(S_n\)-module. We conjecture that \({\bf M}_{\mu/ij}\) is always a direct sum of \(k\) left regular representations of \(S_n\), where \(k\) is the number of cells that are weakly north and east of \((i,j)\) in \(\mu\). We also make a number of conjectures describing the precise nature of the bivariate Frobenius characteristic of \({\bf M}_{\mu/ij}\) in terms of the theory of Macdonald polynomials. On the validity of these conjectures, we derive a number of surprising identities. In particular, we obtain a representation theoretical interpretation of the coefficients appearing in some Macdonald Pieri Rules.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9809126</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 1998-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080941394 |
source | Free E- Journals |
subjects | Bivariate analysis Polynomials Representations |
title | Lattice Diagram Polynomials and Extended Pieri Rules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Lattice%20Diagram%20Polynomials%20and%20Extended%20Pieri%20Rules&rft.jtitle=arXiv.org&rft.au=Bergeron,%20F&rft.date=1998-09-22&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9809126&rft_dat=%3Cproquest%3E2080941394%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080941394&rft_id=info:pmid/&rfr_iscdi=true |