Neural Network Predictive Control Method of Sand Mixing Device

In the process of oil extraction, fracturing technology has been widely used as a viable means to increase oil and gas permeability, and sand mixing device is one of the important devices in fracturing process. Based on the working process of the second-stage sand agitator tank, this study establish...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroQuantology 2018, Vol.16 (6)
Hauptverfasser: Li, Meiqiu, Zhou, Yuanhua, Tian, Ye, Wu, Bangxiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title NeuroQuantology
container_volume 16
creator Li, Meiqiu
Zhou, Yuanhua
Tian, Ye
Wu, Bangxiong
description In the process of oil extraction, fracturing technology has been widely used as a viable means to increase oil and gas permeability, and sand mixing device is one of the important devices in fracturing process. Based on the working process of the second-stage sand agitator tank, this study establishes the kinetic equations of the mixing process of the second-stage sand mixing device, proposes a network predictive control algorithm based on BP neural network, analyzes its dynamic matrix predictive control structure and apply it to predictive control of the agitator tank of blender. The simulation experiment proves that the neural network control algorithm can effectively improve the control quality of the mixing device of the blender and improve the sand mixing effects.
doi_str_mv 10.14704/nq.2018.16.6.1611
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2080918873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080918873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c141t-c1ba072fa63c102aa9bfa9dc76fa2b9195f03c05fd00d910c6e199802b156b383</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqXwB5gsMSe8r5048YKEyqfUFiRgthzHhpQQN05S4N-TUgaWuxtOd9JDyClCjEkGyXnTxgwwj1HEYhTEPTJBDjxKMYX9f_mQHHXdCiDNQIoJuVjaIeiaLm3_6cM7fQy2rExfbSyd-aYPvqYL27_5knpHn3RT0kX1VTWv9MpuKmOPyYHTdWdP_nxKXm6un2d30fzh9n52OY8MJtiPWmjImNOCGwSmtSyclqXJhNOskChTB9xA6kqAUiIYYVHKHFiBqSh4zqfkbLe7Dr4dbNerlR9CM14qBjlIzPOMjy22a5nguy5Yp9ah-tDhWyGoX06qadWWk0KhhNpy4j-_xVpS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080918873</pqid></control><display><type>article</type><title>Neural Network Predictive Control Method of Sand Mixing Device</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Meiqiu ; Zhou, Yuanhua ; Tian, Ye ; Wu, Bangxiong</creator><creatorcontrib>Li, Meiqiu ; Zhou, Yuanhua ; Tian, Ye ; Wu, Bangxiong</creatorcontrib><description>In the process of oil extraction, fracturing technology has been widely used as a viable means to increase oil and gas permeability, and sand mixing device is one of the important devices in fracturing process. Based on the working process of the second-stage sand agitator tank, this study establishes the kinetic equations of the mixing process of the second-stage sand mixing device, proposes a network predictive control algorithm based on BP neural network, analyzes its dynamic matrix predictive control structure and apply it to predictive control of the agitator tank of blender. The simulation experiment proves that the neural network control algorithm can effectively improve the control quality of the mixing device of the blender and improve the sand mixing effects.</description><identifier>ISSN: 1303-5150</identifier><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2018.16.6.1611</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Computer simulation ; Control theory ; Fracturing ; Kinetic equations ; Network control ; Neural networks ; Permeability ; Predictive control ; Sand</subject><ispartof>NeuroQuantology, 2018, Vol.16 (6)</ispartof><rights>Copyright NeuroQuantology 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Meiqiu</creatorcontrib><creatorcontrib>Zhou, Yuanhua</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Wu, Bangxiong</creatorcontrib><title>Neural Network Predictive Control Method of Sand Mixing Device</title><title>NeuroQuantology</title><description>In the process of oil extraction, fracturing technology has been widely used as a viable means to increase oil and gas permeability, and sand mixing device is one of the important devices in fracturing process. Based on the working process of the second-stage sand agitator tank, this study establishes the kinetic equations of the mixing process of the second-stage sand mixing device, proposes a network predictive control algorithm based on BP neural network, analyzes its dynamic matrix predictive control structure and apply it to predictive control of the agitator tank of blender. The simulation experiment proves that the neural network control algorithm can effectively improve the control quality of the mixing device of the blender and improve the sand mixing effects.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Fracturing</subject><subject>Kinetic equations</subject><subject>Network control</subject><subject>Neural networks</subject><subject>Permeability</subject><subject>Predictive control</subject><subject>Sand</subject><issn>1303-5150</issn><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkD1PwzAYhC0EEqXwB5gsMSe8r5048YKEyqfUFiRgthzHhpQQN05S4N-TUgaWuxtOd9JDyClCjEkGyXnTxgwwj1HEYhTEPTJBDjxKMYX9f_mQHHXdCiDNQIoJuVjaIeiaLm3_6cM7fQy2rExfbSyd-aYPvqYL27_5knpHn3RT0kX1VTWv9MpuKmOPyYHTdWdP_nxKXm6un2d30fzh9n52OY8MJtiPWmjImNOCGwSmtSyclqXJhNOskChTB9xA6kqAUiIYYVHKHFiBqSh4zqfkbLe7Dr4dbNerlR9CM14qBjlIzPOMjy22a5nguy5Yp9ah-tDhWyGoX06qadWWk0KhhNpy4j-_xVpS</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Li, Meiqiu</creator><creator>Zhou, Yuanhua</creator><creator>Tian, Ye</creator><creator>Wu, Bangxiong</creator><general>NeuroQuantology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>2018</creationdate><title>Neural Network Predictive Control Method of Sand Mixing Device</title><author>Li, Meiqiu ; Zhou, Yuanhua ; Tian, Ye ; Wu, Bangxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c141t-c1ba072fa63c102aa9bfa9dc76fa2b9195f03c05fd00d910c6e199802b156b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Fracturing</topic><topic>Kinetic equations</topic><topic>Network control</topic><topic>Neural networks</topic><topic>Permeability</topic><topic>Predictive control</topic><topic>Sand</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Meiqiu</creatorcontrib><creatorcontrib>Zhou, Yuanhua</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Wu, Bangxiong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Psychology Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Meiqiu</au><au>Zhou, Yuanhua</au><au>Tian, Ye</au><au>Wu, Bangxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network Predictive Control Method of Sand Mixing Device</atitle><jtitle>NeuroQuantology</jtitle><date>2018</date><risdate>2018</risdate><volume>16</volume><issue>6</issue><issn>1303-5150</issn><eissn>1303-5150</eissn><abstract>In the process of oil extraction, fracturing technology has been widely used as a viable means to increase oil and gas permeability, and sand mixing device is one of the important devices in fracturing process. Based on the working process of the second-stage sand agitator tank, this study establishes the kinetic equations of the mixing process of the second-stage sand mixing device, proposes a network predictive control algorithm based on BP neural network, analyzes its dynamic matrix predictive control structure and apply it to predictive control of the agitator tank of blender. The simulation experiment proves that the neural network control algorithm can effectively improve the control quality of the mixing device of the blender and improve the sand mixing effects.</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2018.16.6.1611</doi></addata></record>
fulltext fulltext
identifier ISSN: 1303-5150
ispartof NeuroQuantology, 2018, Vol.16 (6)
issn 1303-5150
1303-5150
language eng
recordid cdi_proquest_journals_2080918873
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Computer simulation
Control theory
Fracturing
Kinetic equations
Network control
Neural networks
Permeability
Predictive control
Sand
title Neural Network Predictive Control Method of Sand Mixing Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20Predictive%20Control%20Method%20of%20Sand%20Mixing%20Device&rft.jtitle=NeuroQuantology&rft.au=Li,%20Meiqiu&rft.date=2018&rft.volume=16&rft.issue=6&rft.issn=1303-5150&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2018.16.6.1611&rft_dat=%3Cproquest_cross%3E2080918873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080918873&rft_id=info:pmid/&rfr_iscdi=true