Neural Network Predictive Control Method of Sand Mixing Device
In the process of oil extraction, fracturing technology has been widely used as a viable means to increase oil and gas permeability, and sand mixing device is one of the important devices in fracturing process. Based on the working process of the second-stage sand agitator tank, this study establish...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2018, Vol.16 (6) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | NeuroQuantology |
container_volume | 16 |
creator | Li, Meiqiu Zhou, Yuanhua Tian, Ye Wu, Bangxiong |
description | In the process of oil extraction, fracturing technology has been widely used as a viable means to increase oil and gas permeability, and sand mixing device is one of the important devices in fracturing process. Based on the working process of the second-stage sand agitator tank, this study establishes the kinetic equations of the mixing process of the second-stage sand mixing device, proposes a network predictive control algorithm based on BP neural network, analyzes its dynamic matrix predictive control structure and apply it to predictive control of the agitator tank of blender. The simulation experiment proves that the neural network control algorithm can effectively improve the control quality of the mixing device of the blender and improve the sand mixing effects. |
doi_str_mv | 10.14704/nq.2018.16.6.1611 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2080918873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080918873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c141t-c1ba072fa63c102aa9bfa9dc76fa2b9195f03c05fd00d910c6e199802b156b383</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqXwB5gsMSe8r5048YKEyqfUFiRgthzHhpQQN05S4N-TUgaWuxtOd9JDyClCjEkGyXnTxgwwj1HEYhTEPTJBDjxKMYX9f_mQHHXdCiDNQIoJuVjaIeiaLm3_6cM7fQy2rExfbSyd-aYPvqYL27_5knpHn3RT0kX1VTWv9MpuKmOPyYHTdWdP_nxKXm6un2d30fzh9n52OY8MJtiPWmjImNOCGwSmtSyclqXJhNOskChTB9xA6kqAUiIYYVHKHFiBqSh4zqfkbLe7Dr4dbNerlR9CM14qBjlIzPOMjy22a5nguy5Yp9ah-tDhWyGoX06qadWWk0KhhNpy4j-_xVpS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080918873</pqid></control><display><type>article</type><title>Neural Network Predictive Control Method of Sand Mixing Device</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Meiqiu ; Zhou, Yuanhua ; Tian, Ye ; Wu, Bangxiong</creator><creatorcontrib>Li, Meiqiu ; Zhou, Yuanhua ; Tian, Ye ; Wu, Bangxiong</creatorcontrib><description>In the process of oil extraction, fracturing technology has been widely used as a viable means to increase oil and gas permeability, and sand mixing device is one of the important devices in fracturing process. Based on the working process of the second-stage sand agitator tank, this study establishes the kinetic equations of the mixing process of the second-stage sand mixing device, proposes a network predictive control algorithm based on BP neural network, analyzes its dynamic matrix predictive control structure and apply it to predictive control of the agitator tank of blender. The simulation experiment proves that the neural network control algorithm can effectively improve the control quality of the mixing device of the blender and improve the sand mixing effects.</description><identifier>ISSN: 1303-5150</identifier><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2018.16.6.1611</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Computer simulation ; Control theory ; Fracturing ; Kinetic equations ; Network control ; Neural networks ; Permeability ; Predictive control ; Sand</subject><ispartof>NeuroQuantology, 2018, Vol.16 (6)</ispartof><rights>Copyright NeuroQuantology 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Meiqiu</creatorcontrib><creatorcontrib>Zhou, Yuanhua</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Wu, Bangxiong</creatorcontrib><title>Neural Network Predictive Control Method of Sand Mixing Device</title><title>NeuroQuantology</title><description>In the process of oil extraction, fracturing technology has been widely used as a viable means to increase oil and gas permeability, and sand mixing device is one of the important devices in fracturing process. Based on the working process of the second-stage sand agitator tank, this study establishes the kinetic equations of the mixing process of the second-stage sand mixing device, proposes a network predictive control algorithm based on BP neural network, analyzes its dynamic matrix predictive control structure and apply it to predictive control of the agitator tank of blender. The simulation experiment proves that the neural network control algorithm can effectively improve the control quality of the mixing device of the blender and improve the sand mixing effects.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Fracturing</subject><subject>Kinetic equations</subject><subject>Network control</subject><subject>Neural networks</subject><subject>Permeability</subject><subject>Predictive control</subject><subject>Sand</subject><issn>1303-5150</issn><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkD1PwzAYhC0EEqXwB5gsMSe8r5048YKEyqfUFiRgthzHhpQQN05S4N-TUgaWuxtOd9JDyClCjEkGyXnTxgwwj1HEYhTEPTJBDjxKMYX9f_mQHHXdCiDNQIoJuVjaIeiaLm3_6cM7fQy2rExfbSyd-aYPvqYL27_5knpHn3RT0kX1VTWv9MpuKmOPyYHTdWdP_nxKXm6un2d30fzh9n52OY8MJtiPWmjImNOCGwSmtSyclqXJhNOskChTB9xA6kqAUiIYYVHKHFiBqSh4zqfkbLe7Dr4dbNerlR9CM14qBjlIzPOMjy22a5nguy5Yp9ah-tDhWyGoX06qadWWk0KhhNpy4j-_xVpS</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Li, Meiqiu</creator><creator>Zhou, Yuanhua</creator><creator>Tian, Ye</creator><creator>Wu, Bangxiong</creator><general>NeuroQuantology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>2018</creationdate><title>Neural Network Predictive Control Method of Sand Mixing Device</title><author>Li, Meiqiu ; Zhou, Yuanhua ; Tian, Ye ; Wu, Bangxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c141t-c1ba072fa63c102aa9bfa9dc76fa2b9195f03c05fd00d910c6e199802b156b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Fracturing</topic><topic>Kinetic equations</topic><topic>Network control</topic><topic>Neural networks</topic><topic>Permeability</topic><topic>Predictive control</topic><topic>Sand</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Meiqiu</creatorcontrib><creatorcontrib>Zhou, Yuanhua</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Wu, Bangxiong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Psychology Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Meiqiu</au><au>Zhou, Yuanhua</au><au>Tian, Ye</au><au>Wu, Bangxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network Predictive Control Method of Sand Mixing Device</atitle><jtitle>NeuroQuantology</jtitle><date>2018</date><risdate>2018</risdate><volume>16</volume><issue>6</issue><issn>1303-5150</issn><eissn>1303-5150</eissn><abstract>In the process of oil extraction, fracturing technology has been widely used as a viable means to increase oil and gas permeability, and sand mixing device is one of the important devices in fracturing process. Based on the working process of the second-stage sand agitator tank, this study establishes the kinetic equations of the mixing process of the second-stage sand mixing device, proposes a network predictive control algorithm based on BP neural network, analyzes its dynamic matrix predictive control structure and apply it to predictive control of the agitator tank of blender. The simulation experiment proves that the neural network control algorithm can effectively improve the control quality of the mixing device of the blender and improve the sand mixing effects.</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2018.16.6.1611</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1303-5150 |
ispartof | NeuroQuantology, 2018, Vol.16 (6) |
issn | 1303-5150 1303-5150 |
language | eng |
recordid | cdi_proquest_journals_2080918873 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Computer simulation Control theory Fracturing Kinetic equations Network control Neural networks Permeability Predictive control Sand |
title | Neural Network Predictive Control Method of Sand Mixing Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20Predictive%20Control%20Method%20of%20Sand%20Mixing%20Device&rft.jtitle=NeuroQuantology&rft.au=Li,%20Meiqiu&rft.date=2018&rft.volume=16&rft.issue=6&rft.issn=1303-5150&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2018.16.6.1611&rft_dat=%3Cproquest_cross%3E2080918873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080918873&rft_id=info:pmid/&rfr_iscdi=true |