Points of order 13 on elliptic curves

We pick up the study of 13-torsion in elliptic curves where Mazur and Tate left off 45 years ago. We consider various questions concerning elliptic curves defined over the maximal totally real subfield of the 13th cyclotomic field (where J_1(13) acquires everywhere good reduction), and over quadrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-10
Hauptverfasser: Kamienny, Sheldon, Newman, Burton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kamienny, Sheldon
Newman, Burton
description We pick up the study of 13-torsion in elliptic curves where Mazur and Tate left off 45 years ago. We consider various questions concerning elliptic curves defined over the maximal totally real subfield of the 13th cyclotomic field (where J_1(13) acquires everywhere good reduction), and over quadratic extensions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080878320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080878320</sourcerecordid><originalsourceid>FETCH-proquest_journals_20808783203</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDcjPzCspVshPU8gvSkktUjA0VsjPU0jNycksKMlMVkguLSpLLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsDC3MLYyMDY-JUAQC29C5T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080878320</pqid></control><display><type>article</type><title>Points of order 13 on elliptic curves</title><source>Free E- Journals</source><creator>Kamienny, Sheldon ; Newman, Burton</creator><creatorcontrib>Kamienny, Sheldon ; Newman, Burton</creatorcontrib><description>We pick up the study of 13-torsion in elliptic curves where Mazur and Tate left off 45 years ago. We consider various questions concerning elliptic curves defined over the maximal totally real subfield of the 13th cyclotomic field (where J_1(13) acquires everywhere good reduction), and over quadratic extensions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curves</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kamienny, Sheldon</creatorcontrib><creatorcontrib>Newman, Burton</creatorcontrib><title>Points of order 13 on elliptic curves</title><title>arXiv.org</title><description>We pick up the study of 13-torsion in elliptic curves where Mazur and Tate left off 45 years ago. We consider various questions concerning elliptic curves defined over the maximal totally real subfield of the 13th cyclotomic field (where J_1(13) acquires everywhere good reduction), and over quadratic extensions.</description><subject>Curves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDcjPzCspVshPU8gvSkktUjA0VsjPU0jNycksKMlMVkguLSpLLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsDC3MLYyMDY-JUAQC29C5T</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Kamienny, Sheldon</creator><creator>Newman, Burton</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161015</creationdate><title>Points of order 13 on elliptic curves</title><author>Kamienny, Sheldon ; Newman, Burton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20808783203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Curves</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamienny, Sheldon</creatorcontrib><creatorcontrib>Newman, Burton</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamienny, Sheldon</au><au>Newman, Burton</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Points of order 13 on elliptic curves</atitle><jtitle>arXiv.org</jtitle><date>2016-10-15</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We pick up the study of 13-torsion in elliptic curves where Mazur and Tate left off 45 years ago. We consider various questions concerning elliptic curves defined over the maximal totally real subfield of the 13th cyclotomic field (where J_1(13) acquires everywhere good reduction), and over quadratic extensions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080878320
source Free E- Journals
subjects Curves
title Points of order 13 on elliptic curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Points%20of%20order%2013%20on%20elliptic%20curves&rft.jtitle=arXiv.org&rft.au=Kamienny,%20Sheldon&rft.date=2016-10-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080878320%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080878320&rft_id=info:pmid/&rfr_iscdi=true