Points of order 13 on elliptic curves
We pick up the study of 13-torsion in elliptic curves where Mazur and Tate left off 45 years ago. We consider various questions concerning elliptic curves defined over the maximal totally real subfield of the 13th cyclotomic field (where J_1(13) acquires everywhere good reduction), and over quadrati...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kamienny, Sheldon Newman, Burton |
description | We pick up the study of 13-torsion in elliptic curves where Mazur and Tate left off 45 years ago. We consider various questions concerning elliptic curves defined over the maximal totally real subfield of the 13th cyclotomic field (where J_1(13) acquires everywhere good reduction), and over quadratic extensions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080878320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080878320</sourcerecordid><originalsourceid>FETCH-proquest_journals_20808783203</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDcjPzCspVshPU8gvSkktUjA0VsjPU0jNycksKMlMVkguLSpLLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsDC3MLYyMDY-JUAQC29C5T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080878320</pqid></control><display><type>article</type><title>Points of order 13 on elliptic curves</title><source>Free E- Journals</source><creator>Kamienny, Sheldon ; Newman, Burton</creator><creatorcontrib>Kamienny, Sheldon ; Newman, Burton</creatorcontrib><description>We pick up the study of 13-torsion in elliptic curves where Mazur and Tate left off 45 years ago. We consider various questions concerning elliptic curves defined over the maximal totally real subfield of the 13th cyclotomic field (where J_1(13) acquires everywhere good reduction), and over quadratic extensions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curves</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kamienny, Sheldon</creatorcontrib><creatorcontrib>Newman, Burton</creatorcontrib><title>Points of order 13 on elliptic curves</title><title>arXiv.org</title><description>We pick up the study of 13-torsion in elliptic curves where Mazur and Tate left off 45 years ago. We consider various questions concerning elliptic curves defined over the maximal totally real subfield of the 13th cyclotomic field (where J_1(13) acquires everywhere good reduction), and over quadratic extensions.</description><subject>Curves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDcjPzCspVshPU8gvSkktUjA0VsjPU0jNycksKMlMVkguLSpLLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsDC3MLYyMDY-JUAQC29C5T</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Kamienny, Sheldon</creator><creator>Newman, Burton</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161015</creationdate><title>Points of order 13 on elliptic curves</title><author>Kamienny, Sheldon ; Newman, Burton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20808783203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Curves</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamienny, Sheldon</creatorcontrib><creatorcontrib>Newman, Burton</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamienny, Sheldon</au><au>Newman, Burton</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Points of order 13 on elliptic curves</atitle><jtitle>arXiv.org</jtitle><date>2016-10-15</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We pick up the study of 13-torsion in elliptic curves where Mazur and Tate left off 45 years ago. We consider various questions concerning elliptic curves defined over the maximal totally real subfield of the 13th cyclotomic field (where J_1(13) acquires everywhere good reduction), and over quadratic extensions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080878320 |
source | Free E- Journals |
subjects | Curves |
title | Points of order 13 on elliptic curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Points%20of%20order%2013%20on%20elliptic%20curves&rft.jtitle=arXiv.org&rft.au=Kamienny,%20Sheldon&rft.date=2016-10-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080878320%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080878320&rft_id=info:pmid/&rfr_iscdi=true |