M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification

Our approach is among the three best to tackle the M2CAI Workflow challenge. The latter consists in recognizing the operation phase for each frames of endoscopic videos. In this technical report, we compare several classification models and temporal smoothing methods. Our submitted solution is a fin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-12
Hauptverfasser: Cadène, Rémi, Thomas, Robert, Thome, Nicolas, Cord, Matthieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cadène, Rémi
Thomas, Robert
Thome, Nicolas
Cord, Matthieu
description Our approach is among the three best to tackle the M2CAI Workflow challenge. The latter consists in recognizing the operation phase for each frames of endoscopic videos. In this technical report, we compare several classification models and temporal smoothing methods. Our submitted solution is a fine tuned Residual Network-200 on 80% of the training set with temporal smoothing using simple temporal averaging of the predictions and a Hidden Markov Model modeling the sequence.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080872779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080872779</sourcerecordid><originalsourceid>FETCH-proquest_journals_20808727793</originalsourceid><addsrcrecordid>eNqNjkFuwjAQAC2kSqCWP6zUM5LrFJL2VlkgeggXUHtEVr0hThwveB3ygH68FPEATnMZjWYkJirLXmbFq1JjMWVupJRqkav5PJuI31Lpj0_4pthWngbQtfEewwHfQVM4k--To2A8bLCPV6Th4jIMLtWwcx3CtiNKtQsHMMHC2lmLAUoTWzpDSRY9VBThy1kkWEXTIYP2htlV7sf815_EQ2U84_TGR_G8Wu70enaMdOqR076hPl4meK9kIYtc5flbdp_1B5YJUSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080872779</pqid></control><display><type>article</type><title>M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification</title><source>Free E- Journals</source><creator>Cadène, Rémi ; Thomas, Robert ; Thome, Nicolas ; Cord, Matthieu</creator><creatorcontrib>Cadène, Rémi ; Thomas, Robert ; Thome, Nicolas ; Cord, Matthieu</creatorcontrib><description>Our approach is among the three best to tackle the M2CAI Workflow challenge. The latter consists in recognizing the operation phase for each frames of endoscopic videos. In this technical report, we compare several classification models and temporal smoothing methods. Our submitted solution is a fine tuned Residual Network-200 on 80% of the training set with temporal smoothing using simple temporal averaging of the predictions and a Hidden Markov Model modeling the sequence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Classification ; Markov analysis ; Markov chains ; Neural networks ; Smoothing ; Video data ; Workflow</subject><ispartof>arXiv.org, 2016-12</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cadène, Rémi</creatorcontrib><creatorcontrib>Thomas, Robert</creatorcontrib><creatorcontrib>Thome, Nicolas</creatorcontrib><creatorcontrib>Cord, Matthieu</creatorcontrib><title>M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification</title><title>arXiv.org</title><description>Our approach is among the three best to tackle the M2CAI Workflow challenge. The latter consists in recognizing the operation phase for each frames of endoscopic videos. In this technical report, we compare several classification models and temporal smoothing methods. Our submitted solution is a fine tuned Residual Network-200 on 80% of the training set with temporal smoothing using simple temporal averaging of the predictions and a Hidden Markov Model modeling the sequence.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Neural networks</subject><subject>Smoothing</subject><subject>Video data</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkFuwjAQAC2kSqCWP6zUM5LrFJL2VlkgeggXUHtEVr0hThwveB3ygH68FPEATnMZjWYkJirLXmbFq1JjMWVupJRqkav5PJuI31Lpj0_4pthWngbQtfEewwHfQVM4k--To2A8bLCPV6Th4jIMLtWwcx3CtiNKtQsHMMHC2lmLAUoTWzpDSRY9VBThy1kkWEXTIYP2htlV7sf815_EQ2U84_TGR_G8Wu70enaMdOqR076hPl4meK9kIYtc5flbdp_1B5YJUSw</recordid><startdate>20161202</startdate><enddate>20161202</enddate><creator>Cadène, Rémi</creator><creator>Thomas, Robert</creator><creator>Thome, Nicolas</creator><creator>Cord, Matthieu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20161202</creationdate><title>M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification</title><author>Cadène, Rémi ; Thomas, Robert ; Thome, Nicolas ; Cord, Matthieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20808727793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Neural networks</topic><topic>Smoothing</topic><topic>Video data</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Cadène, Rémi</creatorcontrib><creatorcontrib>Thomas, Robert</creatorcontrib><creatorcontrib>Thome, Nicolas</creatorcontrib><creatorcontrib>Cord, Matthieu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadène, Rémi</au><au>Thomas, Robert</au><au>Thome, Nicolas</au><au>Cord, Matthieu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification</atitle><jtitle>arXiv.org</jtitle><date>2016-12-02</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Our approach is among the three best to tackle the M2CAI Workflow challenge. The latter consists in recognizing the operation phase for each frames of endoscopic videos. In this technical report, we compare several classification models and temporal smoothing methods. Our submitted solution is a fine tuned Residual Network-200 on 80% of the training set with temporal smoothing using simple temporal averaging of the predictions and a Hidden Markov Model modeling the sequence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080872779
source Free E- Journals
subjects Artificial neural networks
Classification
Markov analysis
Markov chains
Neural networks
Smoothing
Video data
Workflow
title M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=M2CAI%20Workflow%20Challenge:%20Convolutional%20Neural%20Networks%20with%20Time%20Smoothing%20and%20Hidden%20Markov%20Model%20for%20Video%20Frames%20Classification&rft.jtitle=arXiv.org&rft.au=Cad%C3%A8ne,%20R%C3%A9mi&rft.date=2016-12-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080872779%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080872779&rft_id=info:pmid/&rfr_iscdi=true