M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification
Our approach is among the three best to tackle the M2CAI Workflow challenge. The latter consists in recognizing the operation phase for each frames of endoscopic videos. In this technical report, we compare several classification models and temporal smoothing methods. Our submitted solution is a fin...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cadène, Rémi Thomas, Robert Thome, Nicolas Cord, Matthieu |
description | Our approach is among the three best to tackle the M2CAI Workflow challenge. The latter consists in recognizing the operation phase for each frames of endoscopic videos. In this technical report, we compare several classification models and temporal smoothing methods. Our submitted solution is a fine tuned Residual Network-200 on 80% of the training set with temporal smoothing using simple temporal averaging of the predictions and a Hidden Markov Model modeling the sequence. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080872779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080872779</sourcerecordid><originalsourceid>FETCH-proquest_journals_20808727793</originalsourceid><addsrcrecordid>eNqNjkFuwjAQAC2kSqCWP6zUM5LrFJL2VlkgeggXUHtEVr0hThwveB3ygH68FPEATnMZjWYkJirLXmbFq1JjMWVupJRqkav5PJuI31Lpj0_4pthWngbQtfEewwHfQVM4k--To2A8bLCPV6Th4jIMLtWwcx3CtiNKtQsHMMHC2lmLAUoTWzpDSRY9VBThy1kkWEXTIYP2htlV7sf815_EQ2U84_TGR_G8Wu70enaMdOqR076hPl4meK9kIYtc5flbdp_1B5YJUSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080872779</pqid></control><display><type>article</type><title>M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification</title><source>Free E- Journals</source><creator>Cadène, Rémi ; Thomas, Robert ; Thome, Nicolas ; Cord, Matthieu</creator><creatorcontrib>Cadène, Rémi ; Thomas, Robert ; Thome, Nicolas ; Cord, Matthieu</creatorcontrib><description>Our approach is among the three best to tackle the M2CAI Workflow challenge. The latter consists in recognizing the operation phase for each frames of endoscopic videos. In this technical report, we compare several classification models and temporal smoothing methods. Our submitted solution is a fine tuned Residual Network-200 on 80% of the training set with temporal smoothing using simple temporal averaging of the predictions and a Hidden Markov Model modeling the sequence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Classification ; Markov analysis ; Markov chains ; Neural networks ; Smoothing ; Video data ; Workflow</subject><ispartof>arXiv.org, 2016-12</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cadène, Rémi</creatorcontrib><creatorcontrib>Thomas, Robert</creatorcontrib><creatorcontrib>Thome, Nicolas</creatorcontrib><creatorcontrib>Cord, Matthieu</creatorcontrib><title>M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification</title><title>arXiv.org</title><description>Our approach is among the three best to tackle the M2CAI Workflow challenge. The latter consists in recognizing the operation phase for each frames of endoscopic videos. In this technical report, we compare several classification models and temporal smoothing methods. Our submitted solution is a fine tuned Residual Network-200 on 80% of the training set with temporal smoothing using simple temporal averaging of the predictions and a Hidden Markov Model modeling the sequence.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Neural networks</subject><subject>Smoothing</subject><subject>Video data</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkFuwjAQAC2kSqCWP6zUM5LrFJL2VlkgeggXUHtEVr0hThwveB3ygH68FPEATnMZjWYkJirLXmbFq1JjMWVupJRqkav5PJuI31Lpj0_4pthWngbQtfEewwHfQVM4k--To2A8bLCPV6Th4jIMLtWwcx3CtiNKtQsHMMHC2lmLAUoTWzpDSRY9VBThy1kkWEXTIYP2htlV7sf815_EQ2U84_TGR_G8Wu70enaMdOqR076hPl4meK9kIYtc5flbdp_1B5YJUSw</recordid><startdate>20161202</startdate><enddate>20161202</enddate><creator>Cadène, Rémi</creator><creator>Thomas, Robert</creator><creator>Thome, Nicolas</creator><creator>Cord, Matthieu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20161202</creationdate><title>M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification</title><author>Cadène, Rémi ; Thomas, Robert ; Thome, Nicolas ; Cord, Matthieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20808727793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Neural networks</topic><topic>Smoothing</topic><topic>Video data</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Cadène, Rémi</creatorcontrib><creatorcontrib>Thomas, Robert</creatorcontrib><creatorcontrib>Thome, Nicolas</creatorcontrib><creatorcontrib>Cord, Matthieu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadène, Rémi</au><au>Thomas, Robert</au><au>Thome, Nicolas</au><au>Cord, Matthieu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification</atitle><jtitle>arXiv.org</jtitle><date>2016-12-02</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Our approach is among the three best to tackle the M2CAI Workflow challenge. The latter consists in recognizing the operation phase for each frames of endoscopic videos. In this technical report, we compare several classification models and temporal smoothing methods. Our submitted solution is a fine tuned Residual Network-200 on 80% of the training set with temporal smoothing using simple temporal averaging of the predictions and a Hidden Markov Model modeling the sequence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080872779 |
source | Free E- Journals |
subjects | Artificial neural networks Classification Markov analysis Markov chains Neural networks Smoothing Video data Workflow |
title | M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and Hidden Markov Model for Video Frames Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=M2CAI%20Workflow%20Challenge:%20Convolutional%20Neural%20Networks%20with%20Time%20Smoothing%20and%20Hidden%20Markov%20Model%20for%20Video%20Frames%20Classification&rft.jtitle=arXiv.org&rft.au=Cad%C3%A8ne,%20R%C3%A9mi&rft.date=2016-12-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080872779%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080872779&rft_id=info:pmid/&rfr_iscdi=true |