Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections

We build metrized quantum vector bundles, over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2018-01, Vol.14
1. Verfasser: Huang, Leonard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We build metrized quantum vector bundles, over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metric, have distance zero between them with respect to the modular Gromov-Hausdorff propinquity.
ISSN:1815-0659
1815-0659
DOI:10.3842/SIGMA.2018.079