Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections
We build metrized quantum vector bundles, over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian met...
Gespeichert in:
Veröffentlicht in: | Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2018-01, Vol.14 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We build metrized quantum vector bundles, over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metric, have distance zero between them with respect to the modular Gromov-Hausdorff propinquity. |
---|---|
ISSN: | 1815-0659 1815-0659 |
DOI: | 10.3842/SIGMA.2018.079 |