Automatic Construction of a Recurrent Neural Network based Classifier for Vehicle Passage Detection

Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-09
Hauptverfasser: Burnaev, Evgeny, Koptelov, Ivan, Novikov, German, Khanipov, Timur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Burnaev, Evgeny
Koptelov, Ivan
Novikov, German
Khanipov, Timur
description Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classifier we use multidimensional signals of various sensors that are installed on the checkpoint. Obtained results demonstrate that the previous approach to handcrafting a classifier, consisting of a set of deterministic rules, can be successfully replaced by an automatic RNN training on an appropriately labelled data.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080476230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080476230</sourcerecordid><originalsourceid>FETCH-proquest_journals_20804762303</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMgWLT_MOC6EJO-tlIVVyIibkuMU02tjU4S_H2L-AGuDtxzOSMWCSkXSZkKMWGxcy3nXOSFyDIZMb0M3j6UNxoq2ztPQXtje7ANKDigDkTYe9hhINUN8G9LdzgrhxeoOuWcaQwSNJbghDejO4T9sKorwgo9fmMzNm5U5zD-ccrmm_Wx2iZPsq-AztetDdQPqha85GmRC8nlf68P6dBGCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080476230</pqid></control><display><type>article</type><title>Automatic Construction of a Recurrent Neural Network based Classifier for Vehicle Passage Detection</title><source>Freely Accessible Journals</source><creator>Burnaev, Evgeny ; Koptelov, Ivan ; Novikov, German ; Khanipov, Timur</creator><creatorcontrib>Burnaev, Evgeny ; Koptelov, Ivan ; Novikov, German ; Khanipov, Timur</creatorcontrib><description>Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classifier we use multidimensional signals of various sensors that are installed on the checkpoint. Obtained results demonstrate that the previous approach to handcrafting a classifier, consisting of a set of deterministic rules, can be successfully replaced by an automatic RNN training on an appropriately labelled data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classifiers ; Neural networks ; Recurrent neural networks</subject><ispartof>arXiv.org, 2016-09</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Burnaev, Evgeny</creatorcontrib><creatorcontrib>Koptelov, Ivan</creatorcontrib><creatorcontrib>Novikov, German</creatorcontrib><creatorcontrib>Khanipov, Timur</creatorcontrib><title>Automatic Construction of a Recurrent Neural Network based Classifier for Vehicle Passage Detection</title><title>arXiv.org</title><description>Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classifier we use multidimensional signals of various sensors that are installed on the checkpoint. Obtained results demonstrate that the previous approach to handcrafting a classifier, consisting of a set of deterministic rules, can be successfully replaced by an automatic RNN training on an appropriately labelled data.</description><subject>Classifiers</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAQRYMgWLT_MOC6EJO-tlIVVyIibkuMU02tjU4S_H2L-AGuDtxzOSMWCSkXSZkKMWGxcy3nXOSFyDIZMb0M3j6UNxoq2ztPQXtje7ANKDigDkTYe9hhINUN8G9LdzgrhxeoOuWcaQwSNJbghDejO4T9sKorwgo9fmMzNm5U5zD-ccrmm_Wx2iZPsq-AztetDdQPqha85GmRC8nlf68P6dBGCQ</recordid><startdate>20160926</startdate><enddate>20160926</enddate><creator>Burnaev, Evgeny</creator><creator>Koptelov, Ivan</creator><creator>Novikov, German</creator><creator>Khanipov, Timur</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160926</creationdate><title>Automatic Construction of a Recurrent Neural Network based Classifier for Vehicle Passage Detection</title><author>Burnaev, Evgeny ; Koptelov, Ivan ; Novikov, German ; Khanipov, Timur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20804762303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classifiers</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Burnaev, Evgeny</creatorcontrib><creatorcontrib>Koptelov, Ivan</creatorcontrib><creatorcontrib>Novikov, German</creatorcontrib><creatorcontrib>Khanipov, Timur</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burnaev, Evgeny</au><au>Koptelov, Ivan</au><au>Novikov, German</au><au>Khanipov, Timur</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automatic Construction of a Recurrent Neural Network based Classifier for Vehicle Passage Detection</atitle><jtitle>arXiv.org</jtitle><date>2016-09-26</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classifier we use multidimensional signals of various sensors that are installed on the checkpoint. Obtained results demonstrate that the previous approach to handcrafting a classifier, consisting of a set of deterministic rules, can be successfully replaced by an automatic RNN training on an appropriately labelled data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080476230
source Freely Accessible Journals
subjects Classifiers
Neural networks
Recurrent neural networks
title Automatic Construction of a Recurrent Neural Network based Classifier for Vehicle Passage Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automatic%20Construction%20of%20a%20Recurrent%20Neural%20Network%20based%20Classifier%20for%20Vehicle%20Passage%20Detection&rft.jtitle=arXiv.org&rft.au=Burnaev,%20Evgeny&rft.date=2016-09-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080476230%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080476230&rft_id=info:pmid/&rfr_iscdi=true