Simplification of Multi-Scale Geometry using Adaptive Curvature Fields
We present a novel algorithm to compute multi-scale curvature fields on triangle meshes. Our algorithm is based on finding robust mean curvatures using the ball neighborhood, where the radius of a ball corresponds to the scale of the features. The essential problem is to find a good radius for each...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Seemann, Patrick Fuhrmann, Simon Guthe, Stefan Langguth, Fabian Goesele, Michael |
description | We present a novel algorithm to compute multi-scale curvature fields on triangle meshes. Our algorithm is based on finding robust mean curvatures using the ball neighborhood, where the radius of a ball corresponds to the scale of the features. The essential problem is to find a good radius for each ball to obtain a reliable curvature estimation. We propose an algorithm that finds suitable radii in an automatic way. In particular, our algorithm is applicable to meshes produced by image-based reconstruction systems. These meshes often contain geometric features at various scales, for example if certain regions have been captured in greater detail. We also show how such a multi-scale curvature field can be converted to a density field and used to guide applications like mesh simplification. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080472727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080472727</sourcerecordid><originalsourceid>FETCH-proquest_journals_20804727273</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBamGY03YZkbVrZXga9xpXRsXkI_X0u-oA4i7M4Z8MiIeUpKVIhdix2buCci3MuskxGrKppnDX11CpPZgLTwyNoT0ndKo1wQzOitx8IjqYXXDo1e1oQymAX5YNFqAh15w5s2yvtMP55z47V9Vnek9mad0Dnm8EEO62pEbzgaS5W5H_XF89NO2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080472727</pqid></control><display><type>article</type><title>Simplification of Multi-Scale Geometry using Adaptive Curvature Fields</title><source>Free E- Journals</source><creator>Seemann, Patrick ; Fuhrmann, Simon ; Guthe, Stefan ; Langguth, Fabian ; Goesele, Michael</creator><creatorcontrib>Seemann, Patrick ; Fuhrmann, Simon ; Guthe, Stefan ; Langguth, Fabian ; Goesele, Michael</creatorcontrib><description>We present a novel algorithm to compute multi-scale curvature fields on triangle meshes. Our algorithm is based on finding robust mean curvatures using the ball neighborhood, where the radius of a ball corresponds to the scale of the features. The essential problem is to find a good radius for each ball to obtain a reliable curvature estimation. We propose an algorithm that finds suitable radii in an automatic way. In particular, our algorithm is applicable to meshes produced by image-based reconstruction systems. These meshes often contain geometric features at various scales, for example if certain regions have been captured in greater detail. We also show how such a multi-scale curvature field can be converted to a density field and used to guide applications like mesh simplification.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Curvature ; Image reconstruction ; Simplification ; Triangles</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Seemann, Patrick</creatorcontrib><creatorcontrib>Fuhrmann, Simon</creatorcontrib><creatorcontrib>Guthe, Stefan</creatorcontrib><creatorcontrib>Langguth, Fabian</creatorcontrib><creatorcontrib>Goesele, Michael</creatorcontrib><title>Simplification of Multi-Scale Geometry using Adaptive Curvature Fields</title><title>arXiv.org</title><description>We present a novel algorithm to compute multi-scale curvature fields on triangle meshes. Our algorithm is based on finding robust mean curvatures using the ball neighborhood, where the radius of a ball corresponds to the scale of the features. The essential problem is to find a good radius for each ball to obtain a reliable curvature estimation. We propose an algorithm that finds suitable radii in an automatic way. In particular, our algorithm is applicable to meshes produced by image-based reconstruction systems. These meshes often contain geometric features at various scales, for example if certain regions have been captured in greater detail. We also show how such a multi-scale curvature field can be converted to a density field and used to guide applications like mesh simplification.</description><subject>Algorithms</subject><subject>Curvature</subject><subject>Image reconstruction</subject><subject>Simplification</subject><subject>Triangles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBamGY03YZkbVrZXga9xpXRsXkI_X0u-oA4i7M4Z8MiIeUpKVIhdix2buCci3MuskxGrKppnDX11CpPZgLTwyNoT0ndKo1wQzOitx8IjqYXXDo1e1oQymAX5YNFqAh15w5s2yvtMP55z47V9Vnek9mad0Dnm8EEO62pEbzgaS5W5H_XF89NO2E</recordid><startdate>20161031</startdate><enddate>20161031</enddate><creator>Seemann, Patrick</creator><creator>Fuhrmann, Simon</creator><creator>Guthe, Stefan</creator><creator>Langguth, Fabian</creator><creator>Goesele, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161031</creationdate><title>Simplification of Multi-Scale Geometry using Adaptive Curvature Fields</title><author>Seemann, Patrick ; Fuhrmann, Simon ; Guthe, Stefan ; Langguth, Fabian ; Goesele, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20804727273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Curvature</topic><topic>Image reconstruction</topic><topic>Simplification</topic><topic>Triangles</topic><toplevel>online_resources</toplevel><creatorcontrib>Seemann, Patrick</creatorcontrib><creatorcontrib>Fuhrmann, Simon</creatorcontrib><creatorcontrib>Guthe, Stefan</creatorcontrib><creatorcontrib>Langguth, Fabian</creatorcontrib><creatorcontrib>Goesele, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seemann, Patrick</au><au>Fuhrmann, Simon</au><au>Guthe, Stefan</au><au>Langguth, Fabian</au><au>Goesele, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simplification of Multi-Scale Geometry using Adaptive Curvature Fields</atitle><jtitle>arXiv.org</jtitle><date>2016-10-31</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We present a novel algorithm to compute multi-scale curvature fields on triangle meshes. Our algorithm is based on finding robust mean curvatures using the ball neighborhood, where the radius of a ball corresponds to the scale of the features. The essential problem is to find a good radius for each ball to obtain a reliable curvature estimation. We propose an algorithm that finds suitable radii in an automatic way. In particular, our algorithm is applicable to meshes produced by image-based reconstruction systems. These meshes often contain geometric features at various scales, for example if certain regions have been captured in greater detail. We also show how such a multi-scale curvature field can be converted to a density field and used to guide applications like mesh simplification.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080472727 |
source | Free E- Journals |
subjects | Algorithms Curvature Image reconstruction Simplification Triangles |
title | Simplification of Multi-Scale Geometry using Adaptive Curvature Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simplification%20of%20Multi-Scale%20Geometry%20using%20Adaptive%20Curvature%20Fields&rft.jtitle=arXiv.org&rft.au=Seemann,%20Patrick&rft.date=2016-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080472727%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080472727&rft_id=info:pmid/&rfr_iscdi=true |