Simplification of Multi-Scale Geometry using Adaptive Curvature Fields
We present a novel algorithm to compute multi-scale curvature fields on triangle meshes. Our algorithm is based on finding robust mean curvatures using the ball neighborhood, where the radius of a ball corresponds to the scale of the features. The essential problem is to find a good radius for each...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel algorithm to compute multi-scale curvature fields on triangle meshes. Our algorithm is based on finding robust mean curvatures using the ball neighborhood, where the radius of a ball corresponds to the scale of the features. The essential problem is to find a good radius for each ball to obtain a reliable curvature estimation. We propose an algorithm that finds suitable radii in an automatic way. In particular, our algorithm is applicable to meshes produced by image-based reconstruction systems. These meshes often contain geometric features at various scales, for example if certain regions have been captured in greater detail. We also show how such a multi-scale curvature field can be converted to a density field and used to guide applications like mesh simplification. |
---|---|
ISSN: | 2331-8422 |