Bayesian Optimization with Shape Constraints

In typical applications of Bayesian optimization, minimal assumptions are made about the objective function being optimized. This is true even when researchers have prior information about the shape of the function with respect to one or more argument. We make the case that shape constraints are oft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-12
Hauptverfasser: Jauch, Michael, Peña, Víctor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jauch, Michael
Peña, Víctor
description In typical applications of Bayesian optimization, minimal assumptions are made about the objective function being optimized. This is true even when researchers have prior information about the shape of the function with respect to one or more argument. We make the case that shape constraints are often appropriate in at least two important application areas of Bayesian optimization: (1) hyperparameter tuning of machine learning algorithms and (2) decision analysis with utility functions. We describe a methodology for incorporating a variety of shape constraints within the usual Bayesian optimization framework and present positive results from simple applications which suggest that Bayesian optimization with shape constraints is a promising topic for further research.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080471599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080471599</sourcerecordid><originalsourceid>FETCH-proquest_journals_20804715993</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcUqsTC3OTMxT8C8oyczNrEosyczPUyjPLMlQCM5ILEhVcM7PKy4pSszMKynmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLAxNzQ1NLS2PiVAEAro4yAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080471599</pqid></control><display><type>article</type><title>Bayesian Optimization with Shape Constraints</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Jauch, Michael ; Peña, Víctor</creator><creatorcontrib>Jauch, Michael ; Peña, Víctor</creatorcontrib><description>In typical applications of Bayesian optimization, minimal assumptions are made about the objective function being optimized. This is true even when researchers have prior information about the shape of the function with respect to one or more argument. We make the case that shape constraints are often appropriate in at least two important application areas of Bayesian optimization: (1) hyperparameter tuning of machine learning algorithms and (2) decision analysis with utility functions. We describe a methodology for incorporating a variety of shape constraints within the usual Bayesian optimization framework and present positive results from simple applications which suggest that Bayesian optimization with shape constraints is a promising topic for further research.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bayesian analysis ; Decision analysis ; Machine learning ; Optimization</subject><ispartof>arXiv.org, 2016-12</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jauch, Michael</creatorcontrib><creatorcontrib>Peña, Víctor</creatorcontrib><title>Bayesian Optimization with Shape Constraints</title><title>arXiv.org</title><description>In typical applications of Bayesian optimization, minimal assumptions are made about the objective function being optimized. This is true even when researchers have prior information about the shape of the function with respect to one or more argument. We make the case that shape constraints are often appropriate in at least two important application areas of Bayesian optimization: (1) hyperparameter tuning of machine learning algorithms and (2) decision analysis with utility functions. We describe a methodology for incorporating a variety of shape constraints within the usual Bayesian optimization framework and present positive results from simple applications which suggest that Bayesian optimization with shape constraints is a promising topic for further research.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Decision analysis</subject><subject>Machine learning</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcUqsTC3OTMxT8C8oyczNrEosyczPUyjPLMlQCM5ILEhVcM7PKy4pSszMKynmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLAxNzQ1NLS2PiVAEAro4yAw</recordid><startdate>20161228</startdate><enddate>20161228</enddate><creator>Jauch, Michael</creator><creator>Peña, Víctor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161228</creationdate><title>Bayesian Optimization with Shape Constraints</title><author>Jauch, Michael ; Peña, Víctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20804715993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Decision analysis</topic><topic>Machine learning</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Jauch, Michael</creatorcontrib><creatorcontrib>Peña, Víctor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jauch, Michael</au><au>Peña, Víctor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian Optimization with Shape Constraints</atitle><jtitle>arXiv.org</jtitle><date>2016-12-28</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>In typical applications of Bayesian optimization, minimal assumptions are made about the objective function being optimized. This is true even when researchers have prior information about the shape of the function with respect to one or more argument. We make the case that shape constraints are often appropriate in at least two important application areas of Bayesian optimization: (1) hyperparameter tuning of machine learning algorithms and (2) decision analysis with utility functions. We describe a methodology for incorporating a variety of shape constraints within the usual Bayesian optimization framework and present positive results from simple applications which suggest that Bayesian optimization with shape constraints is a promising topic for further research.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080471599
source Open Access: Freely Accessible Journals by multiple vendors
subjects Algorithms
Bayesian analysis
Decision analysis
Machine learning
Optimization
title Bayesian Optimization with Shape Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20Optimization%20with%20Shape%20Constraints&rft.jtitle=arXiv.org&rft.au=Jauch,%20Michael&rft.date=2016-12-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080471599%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080471599&rft_id=info:pmid/&rfr_iscdi=true