KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics
Modern advanced analytics applications make use of machine learning techniques and contain multiple steps of domain-specific and general-purpose processing with high resource requirements. We present KeystoneML, a system that captures and optimizes the end-to-end large-scale machine learning applica...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sparks, Evan R Venkataraman, Shivaram Kaftan, Tomer Franklin, Michael J Recht, Benjamin |
description | Modern advanced analytics applications make use of machine learning techniques and contain multiple steps of domain-specific and general-purpose processing with high resource requirements. We present KeystoneML, a system that captures and optimizes the end-to-end large-scale machine learning applications for high-throughput training in a distributed environment with a high-level API. This approach offers increased ease of use and higher performance over existing systems for large scale learning. We demonstrate the effectiveness of KeystoneML in achieving high quality statistical accuracy and scalable training using real world datasets in several domains. By optimizing execution KeystoneML achieves up to 15x training throughput over unoptimized execution on a real image classification application. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080468966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080468966</sourcerecordid><originalsourceid>FETCH-proquest_journals_20804689663</originalsourceid><addsrcrecordid>eNqNysEKgjAYAOARBEn5DoPOwpq6rJtIEVQU1F2G_spkbbZ_Bvb0degBOn2Xb0ICHserKEs4n5EQsWOMcbHmaRoHpDjCiN4aOJ-29NJ79VBvZVp6VT1oZQBpYx09SddCdKukBprXL2kqqGlupB69qnBBpo3UCOHPOVnud_fiEPXOPgdAX3Z2cN-NJWcZS0S2ESL-b30A1ZU55w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080468966</pqid></control><display><type>article</type><title>KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics</title><source>Free E- Journals</source><creator>Sparks, Evan R ; Venkataraman, Shivaram ; Kaftan, Tomer ; Franklin, Michael J ; Recht, Benjamin</creator><creatorcontrib>Sparks, Evan R ; Venkataraman, Shivaram ; Kaftan, Tomer ; Franklin, Michael J ; Recht, Benjamin</creatorcontrib><description>Modern advanced analytics applications make use of machine learning techniques and contain multiple steps of domain-specific and general-purpose processing with high resource requirements. We present KeystoneML, a system that captures and optimizes the end-to-end large-scale machine learning applications for high-throughput training in a distributed environment with a high-level API. This approach offers increased ease of use and higher performance over existing systems for large scale learning. We demonstrate the effectiveness of KeystoneML in achieving high quality statistical accuracy and scalable training using real world datasets in several domains. By optimizing execution KeystoneML achieves up to 15x training throughput over unoptimized execution on a real image classification application.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Image classification ; Machine learning ; System effectiveness ; Training</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sparks, Evan R</creatorcontrib><creatorcontrib>Venkataraman, Shivaram</creatorcontrib><creatorcontrib>Kaftan, Tomer</creatorcontrib><creatorcontrib>Franklin, Michael J</creatorcontrib><creatorcontrib>Recht, Benjamin</creatorcontrib><title>KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics</title><title>arXiv.org</title><description>Modern advanced analytics applications make use of machine learning techniques and contain multiple steps of domain-specific and general-purpose processing with high resource requirements. We present KeystoneML, a system that captures and optimizes the end-to-end large-scale machine learning applications for high-throughput training in a distributed environment with a high-level API. This approach offers increased ease of use and higher performance over existing systems for large scale learning. We demonstrate the effectiveness of KeystoneML in achieving high quality statistical accuracy and scalable training using real world datasets in several domains. By optimizing execution KeystoneML achieves up to 15x training throughput over unoptimized execution on a real image classification application.</description><subject>Artificial intelligence</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>System effectiveness</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgjAYAOARBEn5DoPOwpq6rJtIEVQU1F2G_spkbbZ_Bvb0degBOn2Xb0ICHserKEs4n5EQsWOMcbHmaRoHpDjCiN4aOJ-29NJ79VBvZVp6VT1oZQBpYx09SddCdKukBprXL2kqqGlupB69qnBBpo3UCOHPOVnud_fiEPXOPgdAX3Z2cN-NJWcZS0S2ESL-b30A1ZU55w</recordid><startdate>20161029</startdate><enddate>20161029</enddate><creator>Sparks, Evan R</creator><creator>Venkataraman, Shivaram</creator><creator>Kaftan, Tomer</creator><creator>Franklin, Michael J</creator><creator>Recht, Benjamin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161029</creationdate><title>KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics</title><author>Sparks, Evan R ; Venkataraman, Shivaram ; Kaftan, Tomer ; Franklin, Michael J ; Recht, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20804689663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial intelligence</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>System effectiveness</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Sparks, Evan R</creatorcontrib><creatorcontrib>Venkataraman, Shivaram</creatorcontrib><creatorcontrib>Kaftan, Tomer</creatorcontrib><creatorcontrib>Franklin, Michael J</creatorcontrib><creatorcontrib>Recht, Benjamin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sparks, Evan R</au><au>Venkataraman, Shivaram</au><au>Kaftan, Tomer</au><au>Franklin, Michael J</au><au>Recht, Benjamin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics</atitle><jtitle>arXiv.org</jtitle><date>2016-10-29</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Modern advanced analytics applications make use of machine learning techniques and contain multiple steps of domain-specific and general-purpose processing with high resource requirements. We present KeystoneML, a system that captures and optimizes the end-to-end large-scale machine learning applications for high-throughput training in a distributed environment with a high-level API. This approach offers increased ease of use and higher performance over existing systems for large scale learning. We demonstrate the effectiveness of KeystoneML in achieving high quality statistical accuracy and scalable training using real world datasets in several domains. By optimizing execution KeystoneML achieves up to 15x training throughput over unoptimized execution on a real image classification application.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080468966 |
source | Free E- Journals |
subjects | Artificial intelligence Image classification Machine learning System effectiveness Training |
title | KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=KeystoneML:%20Optimizing%20Pipelines%20for%20Large-Scale%20Advanced%20Analytics&rft.jtitle=arXiv.org&rft.au=Sparks,%20Evan%20R&rft.date=2016-10-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080468966%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080468966&rft_id=info:pmid/&rfr_iscdi=true |