Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them

While cytochrome P450 (CYP)-mediated biosynthesis of arachidonic acid (AA) epoxides promotes tumor growth by driving angiogenesis, cancer cell intrinsic functions of CYPs are less understood. CYP-derived AA epoxides, called epoxyeicosatrienoic acids (EETs), also promote the growth of tumor epithelia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer and metastasis reviews 2018-09, Vol.37 (2-3), p.409-423
Hauptverfasser: Guo, Zhijun, Johnson, Veronica, Barrera, Jaime, Porras, Mariel, Hinojosa, Diego, Hernández, Irwin, McGarrah, Patrick, Potter, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 2-3
container_start_page 409
container_title Cancer and metastasis reviews
container_volume 37
creator Guo, Zhijun
Johnson, Veronica
Barrera, Jaime
Porras, Mariel
Hinojosa, Diego
Hernández, Irwin
McGarrah, Patrick
Potter, David A.
description While cytochrome P450 (CYP)-mediated biosynthesis of arachidonic acid (AA) epoxides promotes tumor growth by driving angiogenesis, cancer cell intrinsic functions of CYPs are less understood. CYP-derived AA epoxides, called epoxyeicosatrienoic acids (EETs), also promote the growth of tumor epithelia. In cancer cells, CYP AA epoxygenase enzymes are associated with STAT3 and mTOR signaling, but also localize in mitochondria, where they promote the electron transport chain (ETC). Recently, the diabetes drug metformin was found to inhibit CYP AA epoxygenase activity, allowing the design of more potent biguanides to target tumor growth. Biguanide inhibition of EET synthesis suppresses STAT3 and mTOR pathways, as well as the ETC . Convergence of biguanide activity and eicosanoid biology in cancer has shown a new pathway to attack cancer metabolism and provides hope for improved treatments that target this vulnerability. Inhibition of EET-mediated cancer metabolism and angiogenesis therefore provides a dual approach for targeted cancer therapeutics.
doi_str_mv 10.1007/s10555-018-9749-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2080418855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712965761</galeid><sourcerecordid>A712965761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-53d9a6dcbd2e183596dc82b4b2168d2f89f75a4191a4a4d17a734fdd153704b63</originalsourceid><addsrcrecordid>eNp1kUtvEzEUhS1ERUPhB7BBFl272OPXmF0V8ZIq0UW7YGV57DuJS8ZO7YlQ_30dpaUgFXnhx_3OsY4OQu8YPWOU6o-VUSkloawnRgtD1Au0YFJzojvOX6IFZUoTraQ5Rq9rvaFNw7V5hY45pUo17QL9unJlBXNMK-zv5uzXJU-AL4WkJMAWUoA0Y--Sh4I9bDZ4insqp1Ci-_Q4cbVmH90MAS9_XlbsUsC_11AAzxmPsd3mNUxv0NHoNhXePuwn6PrL56vlN3Lx4-v35fkF8cKYmUgejFPBD6ED1nNp2rnvBjF0TPWhG3szaukEM8wJJwLTTnMxhsAk11QMip-g04PvtuTbHdTZ3uRdSe1L29GeCtb3Uj5RK7cBG9OY5-L8FKu355p1RkmtWKM-PEP5bby1f0Nnz0BtBZiizwnG2N7_cWUHgS-51gKj3ZY4uXJnGbX7au2hWtuqtftq7T7V-4dUu2GC8Efx2GUDugNQ2yitoDzF_r_rPbRPq3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080418855</pqid></control><display><type>article</type><title>Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Guo, Zhijun ; Johnson, Veronica ; Barrera, Jaime ; Porras, Mariel ; Hinojosa, Diego ; Hernández, Irwin ; McGarrah, Patrick ; Potter, David A.</creator><creatorcontrib>Guo, Zhijun ; Johnson, Veronica ; Barrera, Jaime ; Porras, Mariel ; Hinojosa, Diego ; Hernández, Irwin ; McGarrah, Patrick ; Potter, David A.</creatorcontrib><description>While cytochrome P450 (CYP)-mediated biosynthesis of arachidonic acid (AA) epoxides promotes tumor growth by driving angiogenesis, cancer cell intrinsic functions of CYPs are less understood. CYP-derived AA epoxides, called epoxyeicosatrienoic acids (EETs), also promote the growth of tumor epithelia. In cancer cells, CYP AA epoxygenase enzymes are associated with STAT3 and mTOR signaling, but also localize in mitochondria, where they promote the electron transport chain (ETC). Recently, the diabetes drug metformin was found to inhibit CYP AA epoxygenase activity, allowing the design of more potent biguanides to target tumor growth. Biguanide inhibition of EET synthesis suppresses STAT3 and mTOR pathways, as well as the ETC . Convergence of biguanide activity and eicosanoid biology in cancer has shown a new pathway to attack cancer metabolism and provides hope for improved treatments that target this vulnerability. Inhibition of EET-mediated cancer metabolism and angiogenesis therefore provides a dual approach for targeted cancer therapeutics.</description><identifier>ISSN: 0167-7659</identifier><identifier>EISSN: 1573-7233</identifier><identifier>DOI: 10.1007/s10555-018-9749-6</identifier><identifier>PMID: 30066055</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angiogenesis ; Animals ; Antidiabetics ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Arachidonic acid ; Autophagy - drug effects ; Autophagy - genetics ; Biomedical and Life Sciences ; Biomedicine ; Biosynthesis ; Breast cancer ; Cancer ; Cancer Research ; Clinical Trials as Topic ; Cytochrome ; Cytochrome P-450 ; Cytochrome P-450 Enzyme Inhibitors - pharmacology ; Cytochrome P-450 Enzyme Inhibitors - therapeutic use ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Cytochrome P450 ; Diabetes mellitus ; Diabetes therapy ; Drug Discovery ; Drug Interactions ; Drug Repositioning ; Electron transport ; Electron transport chain ; Electron Transport Chain Complex Proteins - genetics ; Electron Transport Chain Complex Proteins - metabolism ; Epoxides ; Humans ; Inhibition ; Metabolism ; Metformin ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - genetics ; Mitochondria - metabolism ; Molecular Targeted Therapy ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Oncology ; Physiological aspects ; Signal Transduction - drug effects ; Stat3 protein ; TOR protein ; Treatment Outcome ; Tumor Microenvironment ; Unsaturated fatty acids</subject><ispartof>Cancer and metastasis reviews, 2018-09, Vol.37 (2-3), p.409-423</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Cancer and Metastasis Reviews is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-53d9a6dcbd2e183596dc82b4b2168d2f89f75a4191a4a4d17a734fdd153704b63</citedby><cites>FETCH-LOGICAL-c499t-53d9a6dcbd2e183596dc82b4b2168d2f89f75a4191a4a4d17a734fdd153704b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10555-018-9749-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10555-018-9749-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30066055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Zhijun</creatorcontrib><creatorcontrib>Johnson, Veronica</creatorcontrib><creatorcontrib>Barrera, Jaime</creatorcontrib><creatorcontrib>Porras, Mariel</creatorcontrib><creatorcontrib>Hinojosa, Diego</creatorcontrib><creatorcontrib>Hernández, Irwin</creatorcontrib><creatorcontrib>McGarrah, Patrick</creatorcontrib><creatorcontrib>Potter, David A.</creatorcontrib><title>Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them</title><title>Cancer and metastasis reviews</title><addtitle>Cancer Metastasis Rev</addtitle><addtitle>Cancer Metastasis Rev</addtitle><description>While cytochrome P450 (CYP)-mediated biosynthesis of arachidonic acid (AA) epoxides promotes tumor growth by driving angiogenesis, cancer cell intrinsic functions of CYPs are less understood. CYP-derived AA epoxides, called epoxyeicosatrienoic acids (EETs), also promote the growth of tumor epithelia. In cancer cells, CYP AA epoxygenase enzymes are associated with STAT3 and mTOR signaling, but also localize in mitochondria, where they promote the electron transport chain (ETC). Recently, the diabetes drug metformin was found to inhibit CYP AA epoxygenase activity, allowing the design of more potent biguanides to target tumor growth. Biguanide inhibition of EET synthesis suppresses STAT3 and mTOR pathways, as well as the ETC . Convergence of biguanide activity and eicosanoid biology in cancer has shown a new pathway to attack cancer metabolism and provides hope for improved treatments that target this vulnerability. Inhibition of EET-mediated cancer metabolism and angiogenesis therefore provides a dual approach for targeted cancer therapeutics.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antidiabetics</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Arachidonic acid</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biosynthesis</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Clinical Trials as Topic</subject><subject>Cytochrome</subject><subject>Cytochrome P-450</subject><subject>Cytochrome P-450 Enzyme Inhibitors - pharmacology</subject><subject>Cytochrome P-450 Enzyme Inhibitors - therapeutic use</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochrome P450</subject><subject>Diabetes mellitus</subject><subject>Diabetes therapy</subject><subject>Drug Discovery</subject><subject>Drug Interactions</subject><subject>Drug Repositioning</subject><subject>Electron transport</subject><subject>Electron transport chain</subject><subject>Electron Transport Chain Complex Proteins - genetics</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Epoxides</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Metabolism</subject><subject>Metformin</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Molecular Targeted Therapy</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Oncology</subject><subject>Physiological aspects</subject><subject>Signal Transduction - drug effects</subject><subject>Stat3 protein</subject><subject>TOR protein</subject><subject>Treatment Outcome</subject><subject>Tumor Microenvironment</subject><subject>Unsaturated fatty acids</subject><issn>0167-7659</issn><issn>1573-7233</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtvEzEUhS1ERUPhB7BBFl272OPXmF0V8ZIq0UW7YGV57DuJS8ZO7YlQ_30dpaUgFXnhx_3OsY4OQu8YPWOU6o-VUSkloawnRgtD1Au0YFJzojvOX6IFZUoTraQ5Rq9rvaFNw7V5hY45pUo17QL9unJlBXNMK-zv5uzXJU-AL4WkJMAWUoA0Y--Sh4I9bDZ4insqp1Ci-_Q4cbVmH90MAS9_XlbsUsC_11AAzxmPsd3mNUxv0NHoNhXePuwn6PrL56vlN3Lx4-v35fkF8cKYmUgejFPBD6ED1nNp2rnvBjF0TPWhG3szaukEM8wJJwLTTnMxhsAk11QMip-g04PvtuTbHdTZ3uRdSe1L29GeCtb3Uj5RK7cBG9OY5-L8FKu355p1RkmtWKM-PEP5bby1f0Nnz0BtBZiizwnG2N7_cWUHgS-51gKj3ZY4uXJnGbX7au2hWtuqtftq7T7V-4dUu2GC8Efx2GUDugNQ2yitoDzF_r_rPbRPq3Q</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Guo, Zhijun</creator><creator>Johnson, Veronica</creator><creator>Barrera, Jaime</creator><creator>Porras, Mariel</creator><creator>Hinojosa, Diego</creator><creator>Hernández, Irwin</creator><creator>McGarrah, Patrick</creator><creator>Potter, David A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M3G</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20180901</creationdate><title>Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them</title><author>Guo, Zhijun ; Johnson, Veronica ; Barrera, Jaime ; Porras, Mariel ; Hinojosa, Diego ; Hernández, Irwin ; McGarrah, Patrick ; Potter, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-53d9a6dcbd2e183596dc82b4b2168d2f89f75a4191a4a4d17a734fdd153704b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antidiabetics</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Arachidonic acid</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biosynthesis</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Clinical Trials as Topic</topic><topic>Cytochrome</topic><topic>Cytochrome P-450</topic><topic>Cytochrome P-450 Enzyme Inhibitors - pharmacology</topic><topic>Cytochrome P-450 Enzyme Inhibitors - therapeutic use</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochrome P450</topic><topic>Diabetes mellitus</topic><topic>Diabetes therapy</topic><topic>Drug Discovery</topic><topic>Drug Interactions</topic><topic>Drug Repositioning</topic><topic>Electron transport</topic><topic>Electron transport chain</topic><topic>Electron Transport Chain Complex Proteins - genetics</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Epoxides</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Metabolism</topic><topic>Metformin</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Molecular Targeted Therapy</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Oncology</topic><topic>Physiological aspects</topic><topic>Signal Transduction - drug effects</topic><topic>Stat3 protein</topic><topic>TOR protein</topic><topic>Treatment Outcome</topic><topic>Tumor Microenvironment</topic><topic>Unsaturated fatty acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Zhijun</creatorcontrib><creatorcontrib>Johnson, Veronica</creatorcontrib><creatorcontrib>Barrera, Jaime</creatorcontrib><creatorcontrib>Porras, Mariel</creatorcontrib><creatorcontrib>Hinojosa, Diego</creatorcontrib><creatorcontrib>Hernández, Irwin</creatorcontrib><creatorcontrib>McGarrah, Patrick</creatorcontrib><creatorcontrib>Potter, David A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business &amp; Current Affairs Database</collection><collection>Canadian Business &amp; Current Affairs Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>CBCA Reference &amp; Current Events</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Cancer and metastasis reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Zhijun</au><au>Johnson, Veronica</au><au>Barrera, Jaime</au><au>Porras, Mariel</au><au>Hinojosa, Diego</au><au>Hernández, Irwin</au><au>McGarrah, Patrick</au><au>Potter, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them</atitle><jtitle>Cancer and metastasis reviews</jtitle><stitle>Cancer Metastasis Rev</stitle><addtitle>Cancer Metastasis Rev</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>37</volume><issue>2-3</issue><spage>409</spage><epage>423</epage><pages>409-423</pages><issn>0167-7659</issn><eissn>1573-7233</eissn><abstract>While cytochrome P450 (CYP)-mediated biosynthesis of arachidonic acid (AA) epoxides promotes tumor growth by driving angiogenesis, cancer cell intrinsic functions of CYPs are less understood. CYP-derived AA epoxides, called epoxyeicosatrienoic acids (EETs), also promote the growth of tumor epithelia. In cancer cells, CYP AA epoxygenase enzymes are associated with STAT3 and mTOR signaling, but also localize in mitochondria, where they promote the electron transport chain (ETC). Recently, the diabetes drug metformin was found to inhibit CYP AA epoxygenase activity, allowing the design of more potent biguanides to target tumor growth. Biguanide inhibition of EET synthesis suppresses STAT3 and mTOR pathways, as well as the ETC . Convergence of biguanide activity and eicosanoid biology in cancer has shown a new pathway to attack cancer metabolism and provides hope for improved treatments that target this vulnerability. Inhibition of EET-mediated cancer metabolism and angiogenesis therefore provides a dual approach for targeted cancer therapeutics.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30066055</pmid><doi>10.1007/s10555-018-9749-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7659
ispartof Cancer and metastasis reviews, 2018-09, Vol.37 (2-3), p.409-423
issn 0167-7659
1573-7233
language eng
recordid cdi_proquest_journals_2080418855
source MEDLINE; SpringerLink Journals
subjects Angiogenesis
Animals
Antidiabetics
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Arachidonic acid
Autophagy - drug effects
Autophagy - genetics
Biomedical and Life Sciences
Biomedicine
Biosynthesis
Breast cancer
Cancer
Cancer Research
Clinical Trials as Topic
Cytochrome
Cytochrome P-450
Cytochrome P-450 Enzyme Inhibitors - pharmacology
Cytochrome P-450 Enzyme Inhibitors - therapeutic use
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Cytochrome P450
Diabetes mellitus
Diabetes therapy
Drug Discovery
Drug Interactions
Drug Repositioning
Electron transport
Electron transport chain
Electron Transport Chain Complex Proteins - genetics
Electron Transport Chain Complex Proteins - metabolism
Epoxides
Humans
Inhibition
Metabolism
Metformin
Mitochondria
Mitochondria - drug effects
Mitochondria - genetics
Mitochondria - metabolism
Molecular Targeted Therapy
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Oncology
Physiological aspects
Signal Transduction - drug effects
Stat3 protein
TOR protein
Treatment Outcome
Tumor Microenvironment
Unsaturated fatty acids
title Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20cytochrome%20P450-dependent%20cancer%20cell%20mitochondria:%20cancer%20associated%20CYPs%20and%20where%20to%20find%20them&rft.jtitle=Cancer%20and%20metastasis%20reviews&rft.au=Guo,%20Zhijun&rft.date=2018-09-01&rft.volume=37&rft.issue=2-3&rft.spage=409&rft.epage=423&rft.pages=409-423&rft.issn=0167-7659&rft.eissn=1573-7233&rft_id=info:doi/10.1007/s10555-018-9749-6&rft_dat=%3Cgale_proqu%3EA712965761%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080418855&rft_id=info:pmid/30066055&rft_galeid=A712965761&rfr_iscdi=true