Smart recovery decision-making of used industrial equipment for sustainable manufacturing: belt lifter case study
End-of-Life (EOL) product recovery is proved to be an attractive way to achieve sustainable manufacturing while extending the producer’s responsibility to closed-loop product service. However, it is still a challenge to provide flexible and smart recovery plans for industrial equipment at different...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2020, Vol.31 (1), p.183-197 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 1 |
container_start_page | 183 |
container_title | Journal of intelligent manufacturing |
container_volume | 31 |
creator | Meng, Kai Qian, Xiaoming Lou, Peihuang Zhang, Jiong |
description | End-of-Life (EOL) product recovery is proved to be an attractive way to achieve sustainable manufacturing while extending the producer’s responsibility to closed-loop product service. However, it is still a challenge to provide flexible and smart recovery plans for industrial equipment at different periods of product service. In this paper, we investigate the smart recovery decision-making problem. We propose a system framework for the implementation of smart EOL management based on product condition monitoring. Different product-level EOL business strategies and component-level recovery options are suggested in this recovery decision support system. Then, multi-objective optimization models are formulated to identify the age-dependent recovery roadmap that best matches the product condition and meets the business goals. In order to achieve environmentally friendly recovery, both recovery profits and energy performances are optimized in our models. We conduct a case study of belt lifter used in the automobile assembly line. The Non-dominated Sorting Genetic Algorithm II is used to solve the proposed model. Numerical experiments validate our models and provide practical insights into flexible recovery business. |
doi_str_mv | 10.1007/s10845-018-1439-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2080416428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080416428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-f7f7f50654dcf6064116a6837bdd8fbf95321abac2fb66e2a3d331cbca74ccd3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMmqStNxG_YMGDew9pPiRrvzZJhf33dqngSeYwMLzPDPMgdA30Figt7xLQigtCoSLAi5qwE7QCUTJSARenaEVrIYkQIM7RRUo7SmldSVih_UenY8bRmeHbxQO2zoQUhp50-iv0n3jweErO4tDbKeUYdIvdfgpj5_qM_RBxmsc69LppHe50P3lt8hRn9B43rs24DT67iI1ODqc82cMlOvO6Te7qt6_R9vlp-_hKNu8vb48PG2I4sEx8OZegUnBrvKSSA0gtq6JsrK1842tRMNCNNsw3UjqmC1sUYBqjS26MLdboZlk7xmE_uZTVbphiP19UjFaUg-SsmlOwpEwcUorOqzGG2chBAVVHsWoRq2ax6ihWsZlhC5PG458u_m3-H_oBct1-Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080416428</pqid></control><display><type>article</type><title>Smart recovery decision-making of used industrial equipment for sustainable manufacturing: belt lifter case study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Meng, Kai ; Qian, Xiaoming ; Lou, Peihuang ; Zhang, Jiong</creator><creatorcontrib>Meng, Kai ; Qian, Xiaoming ; Lou, Peihuang ; Zhang, Jiong</creatorcontrib><description>End-of-Life (EOL) product recovery is proved to be an attractive way to achieve sustainable manufacturing while extending the producer’s responsibility to closed-loop product service. However, it is still a challenge to provide flexible and smart recovery plans for industrial equipment at different periods of product service. In this paper, we investigate the smart recovery decision-making problem. We propose a system framework for the implementation of smart EOL management based on product condition monitoring. Different product-level EOL business strategies and component-level recovery options are suggested in this recovery decision support system. Then, multi-objective optimization models are formulated to identify the age-dependent recovery roadmap that best matches the product condition and meets the business goals. In order to achieve environmentally friendly recovery, both recovery profits and energy performances are optimized in our models. We conduct a case study of belt lifter used in the automobile assembly line. The Non-dominated Sorting Genetic Algorithm II is used to solve the proposed model. Numerical experiments validate our models and provide practical insights into flexible recovery business.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-018-1439-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business ; Business and Management ; Case studies ; Classification ; Condition monitoring ; Control ; Decision making ; Energy recovery ; Genetic algorithms ; Industrial equipment ; Machines ; Manufacturing ; Mechatronics ; Multiple objective analysis ; Processes ; Production ; Recovery plans ; Robotics ; Sorting algorithms ; Support systems ; Sustainable development ; Sustainable production</subject><ispartof>Journal of intelligent manufacturing, 2020, Vol.31 (1), p.183-197</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Intelligent Manufacturing is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-f7f7f50654dcf6064116a6837bdd8fbf95321abac2fb66e2a3d331cbca74ccd3</citedby><cites>FETCH-LOGICAL-c412t-f7f7f50654dcf6064116a6837bdd8fbf95321abac2fb66e2a3d331cbca74ccd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-018-1439-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-018-1439-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Meng, Kai</creatorcontrib><creatorcontrib>Qian, Xiaoming</creatorcontrib><creatorcontrib>Lou, Peihuang</creatorcontrib><creatorcontrib>Zhang, Jiong</creatorcontrib><title>Smart recovery decision-making of used industrial equipment for sustainable manufacturing: belt lifter case study</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>End-of-Life (EOL) product recovery is proved to be an attractive way to achieve sustainable manufacturing while extending the producer’s responsibility to closed-loop product service. However, it is still a challenge to provide flexible and smart recovery plans for industrial equipment at different periods of product service. In this paper, we investigate the smart recovery decision-making problem. We propose a system framework for the implementation of smart EOL management based on product condition monitoring. Different product-level EOL business strategies and component-level recovery options are suggested in this recovery decision support system. Then, multi-objective optimization models are formulated to identify the age-dependent recovery roadmap that best matches the product condition and meets the business goals. In order to achieve environmentally friendly recovery, both recovery profits and energy performances are optimized in our models. We conduct a case study of belt lifter used in the automobile assembly line. The Non-dominated Sorting Genetic Algorithm II is used to solve the proposed model. Numerical experiments validate our models and provide practical insights into flexible recovery business.</description><subject>Business</subject><subject>Business and Management</subject><subject>Case studies</subject><subject>Classification</subject><subject>Condition monitoring</subject><subject>Control</subject><subject>Decision making</subject><subject>Energy recovery</subject><subject>Genetic algorithms</subject><subject>Industrial equipment</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Multiple objective analysis</subject><subject>Processes</subject><subject>Production</subject><subject>Recovery plans</subject><subject>Robotics</subject><subject>Sorting algorithms</subject><subject>Support systems</subject><subject>Sustainable development</subject><subject>Sustainable production</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMmqStNxG_YMGDew9pPiRrvzZJhf33dqngSeYwMLzPDPMgdA30Figt7xLQigtCoSLAi5qwE7QCUTJSARenaEVrIYkQIM7RRUo7SmldSVih_UenY8bRmeHbxQO2zoQUhp50-iv0n3jweErO4tDbKeUYdIvdfgpj5_qM_RBxmsc69LppHe50P3lt8hRn9B43rs24DT67iI1ODqc82cMlOvO6Te7qt6_R9vlp-_hKNu8vb48PG2I4sEx8OZegUnBrvKSSA0gtq6JsrK1842tRMNCNNsw3UjqmC1sUYBqjS26MLdboZlk7xmE_uZTVbphiP19UjFaUg-SsmlOwpEwcUorOqzGG2chBAVVHsWoRq2ax6ihWsZlhC5PG458u_m3-H_oBct1-Zg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Meng, Kai</creator><creator>Qian, Xiaoming</creator><creator>Lou, Peihuang</creator><creator>Zhang, Jiong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>Smart recovery decision-making of used industrial equipment for sustainable manufacturing: belt lifter case study</title><author>Meng, Kai ; Qian, Xiaoming ; Lou, Peihuang ; Zhang, Jiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-f7f7f50654dcf6064116a6837bdd8fbf95321abac2fb66e2a3d331cbca74ccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Business</topic><topic>Business and Management</topic><topic>Case studies</topic><topic>Classification</topic><topic>Condition monitoring</topic><topic>Control</topic><topic>Decision making</topic><topic>Energy recovery</topic><topic>Genetic algorithms</topic><topic>Industrial equipment</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Multiple objective analysis</topic><topic>Processes</topic><topic>Production</topic><topic>Recovery plans</topic><topic>Robotics</topic><topic>Sorting algorithms</topic><topic>Support systems</topic><topic>Sustainable development</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Kai</creatorcontrib><creatorcontrib>Qian, Xiaoming</creatorcontrib><creatorcontrib>Lou, Peihuang</creatorcontrib><creatorcontrib>Zhang, Jiong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Kai</au><au>Qian, Xiaoming</au><au>Lou, Peihuang</au><au>Zhang, Jiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart recovery decision-making of used industrial equipment for sustainable manufacturing: belt lifter case study</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>183</spage><epage>197</epage><pages>183-197</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>End-of-Life (EOL) product recovery is proved to be an attractive way to achieve sustainable manufacturing while extending the producer’s responsibility to closed-loop product service. However, it is still a challenge to provide flexible and smart recovery plans for industrial equipment at different periods of product service. In this paper, we investigate the smart recovery decision-making problem. We propose a system framework for the implementation of smart EOL management based on product condition monitoring. Different product-level EOL business strategies and component-level recovery options are suggested in this recovery decision support system. Then, multi-objective optimization models are formulated to identify the age-dependent recovery roadmap that best matches the product condition and meets the business goals. In order to achieve environmentally friendly recovery, both recovery profits and energy performances are optimized in our models. We conduct a case study of belt lifter used in the automobile assembly line. The Non-dominated Sorting Genetic Algorithm II is used to solve the proposed model. Numerical experiments validate our models and provide practical insights into flexible recovery business.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-018-1439-2</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2020, Vol.31 (1), p.183-197 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_journals_2080416428 |
source | SpringerLink Journals - AutoHoldings |
subjects | Business Business and Management Case studies Classification Condition monitoring Control Decision making Energy recovery Genetic algorithms Industrial equipment Machines Manufacturing Mechatronics Multiple objective analysis Processes Production Recovery plans Robotics Sorting algorithms Support systems Sustainable development Sustainable production |
title | Smart recovery decision-making of used industrial equipment for sustainable manufacturing: belt lifter case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20recovery%20decision-making%20of%20used%20industrial%20equipment%20for%20sustainable%20manufacturing:%20belt%20lifter%20case%20study&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Meng,%20Kai&rft.date=2020&rft.volume=31&rft.issue=1&rft.spage=183&rft.epage=197&rft.pages=183-197&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-018-1439-2&rft_dat=%3Cproquest_cross%3E2080416428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080416428&rft_id=info:pmid/&rfr_iscdi=true |