Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling

Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-12
Hauptverfasser: Fauche, Pierre, Gebhardt, Christian, Sukharev, Maxim, Vallee, Renaud A L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fauche, Pierre
Gebhardt, Christian
Sukharev, Maxim
Vallee, Renaud A L
description Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by a organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to the collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effective thin metal layer.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080416315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080416315</sourcerecordid><originalsourceid>FETCH-proquest_journals_20804163153</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgKNp_uOBaSBNbxa0oLl24VmJ6rSlpbs1D9O_Nwg9wNQfmzIzYVEhZLjcrISasCKHjnIt6LapKTtnlZFXoyRkNNCgbtkC3gP6loiEHdAcFmqxFHc0LoadMySoP-NYmZqOnBuGGH3INxAdCiJ5cmzdpsMa1cza-51csfjlji8P-vDsuB0_PhCFeO0re5eoq-IavylqWlfzP-gK2dETN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080416315</pqid></control><display><type>article</type><title>Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling</title><source>Free E- Journals</source><creator>Fauche, Pierre ; Gebhardt, Christian ; Sukharev, Maxim ; Vallee, Renaud A L</creator><creatorcontrib>Fauche, Pierre ; Gebhardt, Christian ; Sukharev, Maxim ; Vallee, Renaud A L</creatorcontrib><description>Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by a organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to the collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effective thin metal layer.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aggregates ; Computer simulation ; Coupling (molecular) ; Dependence ; Excitons ; Hybrid structures ; Incident radiation ; Mathematical models</subject><ispartof>arXiv.org, 2016-12</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Fauche, Pierre</creatorcontrib><creatorcontrib>Gebhardt, Christian</creatorcontrib><creatorcontrib>Sukharev, Maxim</creatorcontrib><creatorcontrib>Vallee, Renaud A L</creatorcontrib><title>Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling</title><title>arXiv.org</title><description>Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by a organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to the collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effective thin metal layer.</description><subject>Aggregates</subject><subject>Computer simulation</subject><subject>Coupling (molecular)</subject><subject>Dependence</subject><subject>Excitons</subject><subject>Hybrid structures</subject><subject>Incident radiation</subject><subject>Mathematical models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgKNp_uOBaSBNbxa0oLl24VmJ6rSlpbs1D9O_Nwg9wNQfmzIzYVEhZLjcrISasCKHjnIt6LapKTtnlZFXoyRkNNCgbtkC3gP6loiEHdAcFmqxFHc0LoadMySoP-NYmZqOnBuGGH3INxAdCiJ5cmzdpsMa1cza-51csfjlji8P-vDsuB0_PhCFeO0re5eoq-IavylqWlfzP-gK2dETN</recordid><startdate>20161223</startdate><enddate>20161223</enddate><creator>Fauche, Pierre</creator><creator>Gebhardt, Christian</creator><creator>Sukharev, Maxim</creator><creator>Vallee, Renaud A L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161223</creationdate><title>Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling</title><author>Fauche, Pierre ; Gebhardt, Christian ; Sukharev, Maxim ; Vallee, Renaud A L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20804163153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aggregates</topic><topic>Computer simulation</topic><topic>Coupling (molecular)</topic><topic>Dependence</topic><topic>Excitons</topic><topic>Hybrid structures</topic><topic>Incident radiation</topic><topic>Mathematical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Fauche, Pierre</creatorcontrib><creatorcontrib>Gebhardt, Christian</creatorcontrib><creatorcontrib>Sukharev, Maxim</creatorcontrib><creatorcontrib>Vallee, Renaud A L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fauche, Pierre</au><au>Gebhardt, Christian</au><au>Sukharev, Maxim</au><au>Vallee, Renaud A L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling</atitle><jtitle>arXiv.org</jtitle><date>2016-12-23</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by a organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to the collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effective thin metal layer.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080416315
source Free E- Journals
subjects Aggregates
Computer simulation
Coupling (molecular)
Dependence
Excitons
Hybrid structures
Incident radiation
Mathematical models
title Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Plasmonic%20opals:%20observation%20of%20a%20collective%20molecular%20exciton%20mode%20beyond%20the%20strong%20coupling&rft.jtitle=arXiv.org&rft.au=Fauche,%20Pierre&rft.date=2016-12-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080416315%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080416315&rft_id=info:pmid/&rfr_iscdi=true