Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling
Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mod...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fauche, Pierre Gebhardt, Christian Sukharev, Maxim Vallee, Renaud A L |
description | Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by a organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to the collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effective thin metal layer. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080416315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080416315</sourcerecordid><originalsourceid>FETCH-proquest_journals_20804163153</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgKNp_uOBaSBNbxa0oLl24VmJ6rSlpbs1D9O_Nwg9wNQfmzIzYVEhZLjcrISasCKHjnIt6LapKTtnlZFXoyRkNNCgbtkC3gP6loiEHdAcFmqxFHc0LoadMySoP-NYmZqOnBuGGH3INxAdCiJ5cmzdpsMa1cza-51csfjlji8P-vDsuB0_PhCFeO0re5eoq-IavylqWlfzP-gK2dETN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080416315</pqid></control><display><type>article</type><title>Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling</title><source>Free E- Journals</source><creator>Fauche, Pierre ; Gebhardt, Christian ; Sukharev, Maxim ; Vallee, Renaud A L</creator><creatorcontrib>Fauche, Pierre ; Gebhardt, Christian ; Sukharev, Maxim ; Vallee, Renaud A L</creatorcontrib><description>Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by a organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to the collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effective thin metal layer.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aggregates ; Computer simulation ; Coupling (molecular) ; Dependence ; Excitons ; Hybrid structures ; Incident radiation ; Mathematical models</subject><ispartof>arXiv.org, 2016-12</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Fauche, Pierre</creatorcontrib><creatorcontrib>Gebhardt, Christian</creatorcontrib><creatorcontrib>Sukharev, Maxim</creatorcontrib><creatorcontrib>Vallee, Renaud A L</creatorcontrib><title>Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling</title><title>arXiv.org</title><description>Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by a organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to the collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effective thin metal layer.</description><subject>Aggregates</subject><subject>Computer simulation</subject><subject>Coupling (molecular)</subject><subject>Dependence</subject><subject>Excitons</subject><subject>Hybrid structures</subject><subject>Incident radiation</subject><subject>Mathematical models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgKNp_uOBaSBNbxa0oLl24VmJ6rSlpbs1D9O_Nwg9wNQfmzIzYVEhZLjcrISasCKHjnIt6LapKTtnlZFXoyRkNNCgbtkC3gP6loiEHdAcFmqxFHc0LoadMySoP-NYmZqOnBuGGH3INxAdCiJ5cmzdpsMa1cza-51csfjlji8P-vDsuB0_PhCFeO0re5eoq-IavylqWlfzP-gK2dETN</recordid><startdate>20161223</startdate><enddate>20161223</enddate><creator>Fauche, Pierre</creator><creator>Gebhardt, Christian</creator><creator>Sukharev, Maxim</creator><creator>Vallee, Renaud A L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161223</creationdate><title>Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling</title><author>Fauche, Pierre ; Gebhardt, Christian ; Sukharev, Maxim ; Vallee, Renaud A L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20804163153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aggregates</topic><topic>Computer simulation</topic><topic>Coupling (molecular)</topic><topic>Dependence</topic><topic>Excitons</topic><topic>Hybrid structures</topic><topic>Incident radiation</topic><topic>Mathematical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Fauche, Pierre</creatorcontrib><creatorcontrib>Gebhardt, Christian</creatorcontrib><creatorcontrib>Sukharev, Maxim</creatorcontrib><creatorcontrib>Vallee, Renaud A L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fauche, Pierre</au><au>Gebhardt, Christian</au><au>Sukharev, Maxim</au><au>Vallee, Renaud A L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling</atitle><jtitle>arXiv.org</jtitle><date>2016-12-23</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by a organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to the collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effective thin metal layer.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080416315 |
source | Free E- Journals |
subjects | Aggregates Computer simulation Coupling (molecular) Dependence Excitons Hybrid structures Incident radiation Mathematical models |
title | Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Plasmonic%20opals:%20observation%20of%20a%20collective%20molecular%20exciton%20mode%20beyond%20the%20strong%20coupling&rft.jtitle=arXiv.org&rft.au=Fauche,%20Pierre&rft.date=2016-12-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080416315%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080416315&rft_id=info:pmid/&rfr_iscdi=true |