Distant supervision for emotion detection using Facebook reactions

We exploit the Facebook reaction feature in a distant supervised fashion to train a support vector machine classifier for emotion detection, using several feature combinations and combining different Facebook pages. We test our models on existing benchmarks for emotion detection and show that employ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-11
Hauptverfasser: Pool, Chris, Nissim, Malvina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pool, Chris
Nissim, Malvina
description We exploit the Facebook reaction feature in a distant supervised fashion to train a support vector machine classifier for emotion detection, using several feature combinations and combining different Facebook pages. We test our models on existing benchmarks for emotion detection and show that employing only information that is derived completely automatically, thus without relying on any handcrafted lexicon as it's usually done, we can achieve competitive results. The results also show that there is large room for improvement, especially by gearing the collection of Facebook pages, with a view to the target domain.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080397724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080397724</sourcerecordid><originalsourceid>FETCH-proquest_journals_20803977243</originalsourceid><addsrcrecordid>eNqNik0KwjAQRoMgWLR3CLguxElr69af4gHcl1inkqqZmkk8v1o8gKv3eN83EQlovcqqHGAmUuZeKQXrEopCJ2K7txyMC5LjgP5l2ZKTHXmJDwpfv2DAdrTI1l1lbVo8E92kRzN2XohpZ-6M6Y9zsawPp90xGzw9I3JoeorefaYGVKX0piwh1_-93iY2OqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080397724</pqid></control><display><type>article</type><title>Distant supervision for emotion detection using Facebook reactions</title><source>Free E- Journals</source><creator>Pool, Chris ; Nissim, Malvina</creator><creatorcontrib>Pool, Chris ; Nissim, Malvina</creatorcontrib><description>We exploit the Facebook reaction feature in a distant supervised fashion to train a support vector machine classifier for emotion detection, using several feature combinations and combining different Facebook pages. We test our models on existing benchmarks for emotion detection and show that employing only information that is derived completely automatically, thus without relying on any handcrafted lexicon as it's usually done, we can achieve competitive results. The results also show that there is large room for improvement, especially by gearing the collection of Facebook pages, with a view to the target domain.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Social networks ; Support vector machines</subject><ispartof>arXiv.org, 2016-11</ispartof><rights>2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Pool, Chris</creatorcontrib><creatorcontrib>Nissim, Malvina</creatorcontrib><title>Distant supervision for emotion detection using Facebook reactions</title><title>arXiv.org</title><description>We exploit the Facebook reaction feature in a distant supervised fashion to train a support vector machine classifier for emotion detection, using several feature combinations and combining different Facebook pages. We test our models on existing benchmarks for emotion detection and show that employing only information that is derived completely automatically, thus without relying on any handcrafted lexicon as it's usually done, we can achieve competitive results. The results also show that there is large room for improvement, especially by gearing the collection of Facebook pages, with a view to the target domain.</description><subject>Social networks</subject><subject>Support vector machines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNik0KwjAQRoMgWLR3CLguxElr69af4gHcl1inkqqZmkk8v1o8gKv3eN83EQlovcqqHGAmUuZeKQXrEopCJ2K7txyMC5LjgP5l2ZKTHXmJDwpfv2DAdrTI1l1lbVo8E92kRzN2XohpZ-6M6Y9zsawPp90xGzw9I3JoeorefaYGVKX0piwh1_-93iY2OqI</recordid><startdate>20161109</startdate><enddate>20161109</enddate><creator>Pool, Chris</creator><creator>Nissim, Malvina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161109</creationdate><title>Distant supervision for emotion detection using Facebook reactions</title><author>Pool, Chris ; Nissim, Malvina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20803977243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Social networks</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Pool, Chris</creatorcontrib><creatorcontrib>Nissim, Malvina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pool, Chris</au><au>Nissim, Malvina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Distant supervision for emotion detection using Facebook reactions</atitle><jtitle>arXiv.org</jtitle><date>2016-11-09</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We exploit the Facebook reaction feature in a distant supervised fashion to train a support vector machine classifier for emotion detection, using several feature combinations and combining different Facebook pages. We test our models on existing benchmarks for emotion detection and show that employing only information that is derived completely automatically, thus without relying on any handcrafted lexicon as it's usually done, we can achieve competitive results. The results also show that there is large room for improvement, especially by gearing the collection of Facebook pages, with a view to the target domain.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080397724
source Free E- Journals
subjects Social networks
Support vector machines
title Distant supervision for emotion detection using Facebook reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Distant%20supervision%20for%20emotion%20detection%20using%20Facebook%20reactions&rft.jtitle=arXiv.org&rft.au=Pool,%20Chris&rft.date=2016-11-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080397724%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080397724&rft_id=info:pmid/&rfr_iscdi=true