Sparse Signal Subspace Decomposition Based on Adaptive Over-complete Dictionary

This paper proposes a subspace decomposition method based on an over-complete dictionary in sparse representation, called "Sparse Signal Subspace Decomposition" (or 3SD) method. This method makes use of a novel criterion based on the occurrence frequency of atoms of the dictionary over the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-10
Hauptverfasser: Sun, Hong, Chengwei Sang, Didier Le Ruyet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sun, Hong
Chengwei Sang
Didier Le Ruyet
description This paper proposes a subspace decomposition method based on an over-complete dictionary in sparse representation, called "Sparse Signal Subspace Decomposition" (or 3SD) method. This method makes use of a novel criterion based on the occurrence frequency of atoms of the dictionary over the data set. This criterion, well adapted to subspace-decomposition over a dependent basis set, adequately re ects the intrinsic characteristic of regularity of the signal. The 3SD method combines variance, sparsity and component frequency criteria into an unified framework. It takes benefits from using an over-complete dictionary which preserves details and from subspace decomposition which rejects strong noise. The 3SD method is very simple with a linear retrieval operation. It does not require any prior knowledge on distributions or parameters. When applied to image denoising, it demonstrates high performances both at preserving fine details and suppressing strong noise.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080319594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080319594</sourcerecordid><originalsourceid>FETCH-proquest_journals_20803195943</originalsourceid><addsrcrecordid>eNqNzc0KgkAUhuEhCJLyHgZaC-OMli77pV0L28tJTzFizjRnFLr7FLqAVt-7eOCbsUAqFUdZIuWChUSNEEJutjJNVcCuhQVHyAv97KDlRX8nCxXyI1bmZQ1pr03H90BY8zF2NVivB-TXAV00kRb9qHU1OXCfFZs_oCUMf7tk6_PpdrhE1pl3j-TLxvRuvKJSikyoOE_zRP2nvhs2Pqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080319594</pqid></control><display><type>article</type><title>Sparse Signal Subspace Decomposition Based on Adaptive Over-complete Dictionary</title><source>Free E- Journals</source><creator>Sun, Hong ; Chengwei Sang ; Didier Le Ruyet</creator><creatorcontrib>Sun, Hong ; Chengwei Sang ; Didier Le Ruyet</creatorcontrib><description>This paper proposes a subspace decomposition method based on an over-complete dictionary in sparse representation, called "Sparse Signal Subspace Decomposition" (or 3SD) method. This method makes use of a novel criterion based on the occurrence frequency of atoms of the dictionary over the data set. This criterion, well adapted to subspace-decomposition over a dependent basis set, adequately re ects the intrinsic characteristic of regularity of the signal. The 3SD method combines variance, sparsity and component frequency criteria into an unified framework. It takes benefits from using an over-complete dictionary which preserves details and from subspace decomposition which rejects strong noise. The 3SD method is very simple with a linear retrieval operation. It does not require any prior knowledge on distributions or parameters. When applied to image denoising, it demonstrates high performances both at preserving fine details and suppressing strong noise.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Criteria ; Decomposition ; Dictionaries ; Noise reduction ; Subspace methods ; Subspaces</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sun, Hong</creatorcontrib><creatorcontrib>Chengwei Sang</creatorcontrib><creatorcontrib>Didier Le Ruyet</creatorcontrib><title>Sparse Signal Subspace Decomposition Based on Adaptive Over-complete Dictionary</title><title>arXiv.org</title><description>This paper proposes a subspace decomposition method based on an over-complete dictionary in sparse representation, called "Sparse Signal Subspace Decomposition" (or 3SD) method. This method makes use of a novel criterion based on the occurrence frequency of atoms of the dictionary over the data set. This criterion, well adapted to subspace-decomposition over a dependent basis set, adequately re ects the intrinsic characteristic of regularity of the signal. The 3SD method combines variance, sparsity and component frequency criteria into an unified framework. It takes benefits from using an over-complete dictionary which preserves details and from subspace decomposition which rejects strong noise. The 3SD method is very simple with a linear retrieval operation. It does not require any prior knowledge on distributions or parameters. When applied to image denoising, it demonstrates high performances both at preserving fine details and suppressing strong noise.</description><subject>Criteria</subject><subject>Decomposition</subject><subject>Dictionaries</subject><subject>Noise reduction</subject><subject>Subspace methods</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzc0KgkAUhuEhCJLyHgZaC-OMli77pV0L28tJTzFizjRnFLr7FLqAVt-7eOCbsUAqFUdZIuWChUSNEEJutjJNVcCuhQVHyAv97KDlRX8nCxXyI1bmZQ1pr03H90BY8zF2NVivB-TXAV00kRb9qHU1OXCfFZs_oCUMf7tk6_PpdrhE1pl3j-TLxvRuvKJSikyoOE_zRP2nvhs2Pqc</recordid><startdate>20161027</startdate><enddate>20161027</enddate><creator>Sun, Hong</creator><creator>Chengwei Sang</creator><creator>Didier Le Ruyet</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161027</creationdate><title>Sparse Signal Subspace Decomposition Based on Adaptive Over-complete Dictionary</title><author>Sun, Hong ; Chengwei Sang ; Didier Le Ruyet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20803195943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Criteria</topic><topic>Decomposition</topic><topic>Dictionaries</topic><topic>Noise reduction</topic><topic>Subspace methods</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Hong</creatorcontrib><creatorcontrib>Chengwei Sang</creatorcontrib><creatorcontrib>Didier Le Ruyet</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Hong</au><au>Chengwei Sang</au><au>Didier Le Ruyet</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sparse Signal Subspace Decomposition Based on Adaptive Over-complete Dictionary</atitle><jtitle>arXiv.org</jtitle><date>2016-10-27</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>This paper proposes a subspace decomposition method based on an over-complete dictionary in sparse representation, called "Sparse Signal Subspace Decomposition" (or 3SD) method. This method makes use of a novel criterion based on the occurrence frequency of atoms of the dictionary over the data set. This criterion, well adapted to subspace-decomposition over a dependent basis set, adequately re ects the intrinsic characteristic of regularity of the signal. The 3SD method combines variance, sparsity and component frequency criteria into an unified framework. It takes benefits from using an over-complete dictionary which preserves details and from subspace decomposition which rejects strong noise. The 3SD method is very simple with a linear retrieval operation. It does not require any prior knowledge on distributions or parameters. When applied to image denoising, it demonstrates high performances both at preserving fine details and suppressing strong noise.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080319594
source Free E- Journals
subjects Criteria
Decomposition
Dictionaries
Noise reduction
Subspace methods
Subspaces
title Sparse Signal Subspace Decomposition Based on Adaptive Over-complete Dictionary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sparse%20Signal%20Subspace%20Decomposition%20Based%20on%20Adaptive%20Over-complete%20Dictionary&rft.jtitle=arXiv.org&rft.au=Sun,%20Hong&rft.date=2016-10-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080319594%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080319594&rft_id=info:pmid/&rfr_iscdi=true