A Maximum Principle for the controlled Sweeping Process
We consider the free endpoint Mayer problem for a controlled Moreau process, the control acting as a perturbation of the dynamics driven by the normal cone, and derive necessary optimality conditions of Pontryagin's Maximum Principle type. The results are also discussed through an example. We c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Arroud, Chems Eddine Colombo, Giovanni |
description | We consider the free endpoint Mayer problem for a controlled Moreau process, the control acting as a perturbation of the dynamics driven by the normal cone, and derive necessary optimality conditions of Pontryagin's Maximum Principle type. The results are also discussed through an example. We combine techniques from M. Sene, L. Thibault, Journal of Nonlinear and Convex Analysis 15 (2014) and from M. Brokate and P. Krejci, Discrete and continuous dynamical systems series B. Volume 18 (2013), 331-348, which in particular deals with a different but related control problem. Our assumptions include the smoothness of the boundary of the moving set \(C(t)\), but do not require its strict convexity. Rather, a kind of inward/outward pointing condition is assumed on the reference optimal trajectory at the times where the boundary of \(C(t)\) is touched. The state space is finite dimensional. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080317378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080317378</sourcerecordid><originalsourceid>FETCH-proquest_journals_20803173783</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwd1TwTazIzC3NVQgoysxLzizISVVIyy9SKMlIVUjOzyspys_JSU1RCC5PTS3IzEsHqspPTi0u5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDCwNjQ3Njcwtj4lQBAO0SNY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080317378</pqid></control><display><type>article</type><title>A Maximum Principle for the controlled Sweeping Process</title><source>Freely Accessible Journals</source><creator>Arroud, Chems Eddine ; Colombo, Giovanni</creator><creatorcontrib>Arroud, Chems Eddine ; Colombo, Giovanni</creatorcontrib><description>We consider the free endpoint Mayer problem for a controlled Moreau process, the control acting as a perturbation of the dynamics driven by the normal cone, and derive necessary optimality conditions of Pontryagin's Maximum Principle type. The results are also discussed through an example. We combine techniques from M. Sene, L. Thibault, Journal of Nonlinear and Convex Analysis 15 (2014) and from M. Brokate and P. Krejci, Discrete and continuous dynamical systems series B. Volume 18 (2013), 331-348, which in particular deals with a different but related control problem. Our assumptions include the smoothness of the boundary of the moving set \(C(t)\), but do not require its strict convexity. Rather, a kind of inward/outward pointing condition is assumed on the reference optimal trajectory at the times where the boundary of \(C(t)\) is touched. The state space is finite dimensional.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Maximum principle ; Mayer problem ; Nonlinear analysis ; Optimization ; Smoothness</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Arroud, Chems Eddine</creatorcontrib><creatorcontrib>Colombo, Giovanni</creatorcontrib><title>A Maximum Principle for the controlled Sweeping Process</title><title>arXiv.org</title><description>We consider the free endpoint Mayer problem for a controlled Moreau process, the control acting as a perturbation of the dynamics driven by the normal cone, and derive necessary optimality conditions of Pontryagin's Maximum Principle type. The results are also discussed through an example. We combine techniques from M. Sene, L. Thibault, Journal of Nonlinear and Convex Analysis 15 (2014) and from M. Brokate and P. Krejci, Discrete and continuous dynamical systems series B. Volume 18 (2013), 331-348, which in particular deals with a different but related control problem. Our assumptions include the smoothness of the boundary of the moving set \(C(t)\), but do not require its strict convexity. Rather, a kind of inward/outward pointing condition is assumed on the reference optimal trajectory at the times where the boundary of \(C(t)\) is touched. The state space is finite dimensional.</description><subject>Convexity</subject><subject>Maximum principle</subject><subject>Mayer problem</subject><subject>Nonlinear analysis</subject><subject>Optimization</subject><subject>Smoothness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwd1TwTazIzC3NVQgoysxLzizISVVIyy9SKMlIVUjOzyspys_JSU1RCC5PTS3IzEsHqspPTi0u5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDCwNjQ3Njcwtj4lQBAO0SNY4</recordid><startdate>20161028</startdate><enddate>20161028</enddate><creator>Arroud, Chems Eddine</creator><creator>Colombo, Giovanni</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161028</creationdate><title>A Maximum Principle for the controlled Sweeping Process</title><author>Arroud, Chems Eddine ; Colombo, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20803173783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convexity</topic><topic>Maximum principle</topic><topic>Mayer problem</topic><topic>Nonlinear analysis</topic><topic>Optimization</topic><topic>Smoothness</topic><toplevel>online_resources</toplevel><creatorcontrib>Arroud, Chems Eddine</creatorcontrib><creatorcontrib>Colombo, Giovanni</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arroud, Chems Eddine</au><au>Colombo, Giovanni</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Maximum Principle for the controlled Sweeping Process</atitle><jtitle>arXiv.org</jtitle><date>2016-10-28</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We consider the free endpoint Mayer problem for a controlled Moreau process, the control acting as a perturbation of the dynamics driven by the normal cone, and derive necessary optimality conditions of Pontryagin's Maximum Principle type. The results are also discussed through an example. We combine techniques from M. Sene, L. Thibault, Journal of Nonlinear and Convex Analysis 15 (2014) and from M. Brokate and P. Krejci, Discrete and continuous dynamical systems series B. Volume 18 (2013), 331-348, which in particular deals with a different but related control problem. Our assumptions include the smoothness of the boundary of the moving set \(C(t)\), but do not require its strict convexity. Rather, a kind of inward/outward pointing condition is assumed on the reference optimal trajectory at the times where the boundary of \(C(t)\) is touched. The state space is finite dimensional.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080317378 |
source | Freely Accessible Journals |
subjects | Convexity Maximum principle Mayer problem Nonlinear analysis Optimization Smoothness |
title | A Maximum Principle for the controlled Sweeping Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Maximum%20Principle%20for%20the%20controlled%20Sweeping%20Process&rft.jtitle=arXiv.org&rft.au=Arroud,%20Chems%20Eddine&rft.date=2016-10-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080317378%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080317378&rft_id=info:pmid/&rfr_iscdi=true |