Unbiased Bayesian Inference for Population Markov Jump Processes via Random Truncations

We consider continuous time Markovian processes where populations of individual agents interact stochastically according to kinetic rules. Despite the increasing prominence of such models in fields ranging from biology to smart cities, Bayesian inference for such systems remains challenging, as thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-05
Hauptverfasser: Georgoulas, Anastasis, Hillston, Jane, Sanguinetti, Guido
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Georgoulas, Anastasis
Hillston, Jane
Sanguinetti, Guido
description We consider continuous time Markovian processes where populations of individual agents interact stochastically according to kinetic rules. Despite the increasing prominence of such models in fields ranging from biology to smart cities, Bayesian inference for such systems remains challenging, as these are continuous time, discrete state systems with potentially infinite state-space. Here we propose a novel efficient algorithm for joint state / parameter posterior sampling in population Markov Jump processes. We introduce a class of pseudo-marginal sampling algorithms based on a random truncation method which enables a principled treatment of infinite state spaces. Extensive evaluation on a number of benchmark models shows that this approach achieves considerable savings compared to state of the art methods, retaining accuracy and fast convergence. We also present results on a synthetic biology data set showing the potential for practical usefulness of our work.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080294764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080294764</sourcerecordid><originalsourceid>FETCH-proquest_journals_20802947643</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60Fqbxt21RVBBIGC1l0itoOmNzHaG3L6IHaHUW55swR_j-yksCIWbMJWo45yKKRRj6Drtd1b2WhCVs5AuplgqOqkKDqkCotIFU97aVQ60VnKV56BFOtushNbpAIiQYawkXqUrdQWasKr6WFmxayZbQ_XXOlvtdtj14vdFPizTkjbZGfVYueMLFOoijwP9PvQFlKEHG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080294764</pqid></control><display><type>article</type><title>Unbiased Bayesian Inference for Population Markov Jump Processes via Random Truncations</title><source>Free E- Journals</source><creator>Georgoulas, Anastasis ; Hillston, Jane ; Sanguinetti, Guido</creator><creatorcontrib>Georgoulas, Anastasis ; Hillston, Jane ; Sanguinetti, Guido</creatorcontrib><description>We consider continuous time Markovian processes where populations of individual agents interact stochastically according to kinetic rules. Despite the increasing prominence of such models in fields ranging from biology to smart cities, Bayesian inference for such systems remains challenging, as these are continuous time, discrete state systems with potentially infinite state-space. Here we propose a novel efficient algorithm for joint state / parameter posterior sampling in population Markov Jump processes. We introduce a class of pseudo-marginal sampling algorithms based on a random truncation method which enables a principled treatment of infinite state spaces. Extensive evaluation on a number of benchmark models shows that this approach achieves considerable savings compared to state of the art methods, retaining accuracy and fast convergence. We also present results on a synthetic biology data set showing the potential for practical usefulness of our work.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bayesian analysis ; Biology ; Markov processes ; Sampling ; Statistical inference</subject><ispartof>arXiv.org, 2016-05</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Georgoulas, Anastasis</creatorcontrib><creatorcontrib>Hillston, Jane</creatorcontrib><creatorcontrib>Sanguinetti, Guido</creatorcontrib><title>Unbiased Bayesian Inference for Population Markov Jump Processes via Random Truncations</title><title>arXiv.org</title><description>We consider continuous time Markovian processes where populations of individual agents interact stochastically according to kinetic rules. Despite the increasing prominence of such models in fields ranging from biology to smart cities, Bayesian inference for such systems remains challenging, as these are continuous time, discrete state systems with potentially infinite state-space. Here we propose a novel efficient algorithm for joint state / parameter posterior sampling in population Markov Jump processes. We introduce a class of pseudo-marginal sampling algorithms based on a random truncation method which enables a principled treatment of infinite state spaces. Extensive evaluation on a number of benchmark models shows that this approach achieves considerable savings compared to state of the art methods, retaining accuracy and fast convergence. We also present results on a synthetic biology data set showing the potential for practical usefulness of our work.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Biology</subject><subject>Markov processes</subject><subject>Sampling</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60Fqbxt21RVBBIGC1l0itoOmNzHaG3L6IHaHUW55swR_j-yksCIWbMJWo45yKKRRj6Drtd1b2WhCVs5AuplgqOqkKDqkCotIFU97aVQ60VnKV56BFOtushNbpAIiQYawkXqUrdQWasKr6WFmxayZbQ_XXOlvtdtj14vdFPizTkjbZGfVYueMLFOoijwP9PvQFlKEHG</recordid><startdate>20160513</startdate><enddate>20160513</enddate><creator>Georgoulas, Anastasis</creator><creator>Hillston, Jane</creator><creator>Sanguinetti, Guido</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160513</creationdate><title>Unbiased Bayesian Inference for Population Markov Jump Processes via Random Truncations</title><author>Georgoulas, Anastasis ; Hillston, Jane ; Sanguinetti, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20802947643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Biology</topic><topic>Markov processes</topic><topic>Sampling</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Georgoulas, Anastasis</creatorcontrib><creatorcontrib>Hillston, Jane</creatorcontrib><creatorcontrib>Sanguinetti, Guido</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgoulas, Anastasis</au><au>Hillston, Jane</au><au>Sanguinetti, Guido</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unbiased Bayesian Inference for Population Markov Jump Processes via Random Truncations</atitle><jtitle>arXiv.org</jtitle><date>2016-05-13</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We consider continuous time Markovian processes where populations of individual agents interact stochastically according to kinetic rules. Despite the increasing prominence of such models in fields ranging from biology to smart cities, Bayesian inference for such systems remains challenging, as these are continuous time, discrete state systems with potentially infinite state-space. Here we propose a novel efficient algorithm for joint state / parameter posterior sampling in population Markov Jump processes. We introduce a class of pseudo-marginal sampling algorithms based on a random truncation method which enables a principled treatment of infinite state spaces. Extensive evaluation on a number of benchmark models shows that this approach achieves considerable savings compared to state of the art methods, retaining accuracy and fast convergence. We also present results on a synthetic biology data set showing the potential for practical usefulness of our work.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080294764
source Free E- Journals
subjects Algorithms
Bayesian analysis
Biology
Markov processes
Sampling
Statistical inference
title Unbiased Bayesian Inference for Population Markov Jump Processes via Random Truncations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unbiased%20Bayesian%20Inference%20for%20Population%20Markov%20Jump%20Processes%20via%20Random%20Truncations&rft.jtitle=arXiv.org&rft.au=Georgoulas,%20Anastasis&rft.date=2016-05-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080294764%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080294764&rft_id=info:pmid/&rfr_iscdi=true