Reliable Prediction Intervals for Local Linear Regression
This paper introduces two methods for estimating reliable prediction intervals for local linear least-squares regressions, named Bounded Oscillation Prediction Intervals (BOPI). It also proposes a new measure for comparing interval prediction models named Equivalent Gaussian Standard Deviation (EGSD...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mohammad Ghasemi Hamed Masoud Ebadi Kivaj |
description | This paper introduces two methods for estimating reliable prediction intervals for local linear least-squares regressions, named Bounded Oscillation Prediction Intervals (BOPI). It also proposes a new measure for comparing interval prediction models named Equivalent Gaussian Standard Deviation (EGSD). The experimental results compare BOPI to other methods using coverage probability, Mean Interval Size and the introduced EGSD measure. The results were generally in favor of the BOPI on considered benchmark regression datasets. It also, reports simulation studies validating the BOPI method's reliability. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080099769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080099769</sourcerecordid><originalsourceid>FETCH-proquest_journals_20800997693</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLsTE_mQWRaGDFPcS662khERvUp_fDD6A0xnOt2CZkHJXNHshViwPYeKci6oWZSkzpjq0Rt8twpXwYYZovIOLi0gfbQOMnqD1g7bQGoeaoMMnYQhJbdhyTATzX9dsezreDufiRf49Y4j95GdyafWCN5wrVVdK_qe-fT02eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080099769</pqid></control><display><type>article</type><title>Reliable Prediction Intervals for Local Linear Regression</title><source>Free E- Journals</source><creator>Mohammad Ghasemi Hamed ; Masoud Ebadi Kivaj</creator><creatorcontrib>Mohammad Ghasemi Hamed ; Masoud Ebadi Kivaj</creatorcontrib><description>This paper introduces two methods for estimating reliable prediction intervals for local linear least-squares regressions, named Bounded Oscillation Prediction Intervals (BOPI). It also proposes a new measure for comparing interval prediction models named Equivalent Gaussian Standard Deviation (EGSD). The experimental results compare BOPI to other methods using coverage probability, Mean Interval Size and the introduced EGSD measure. The results were generally in favor of the BOPI on considered benchmark regression datasets. It also, reports simulation studies validating the BOPI method's reliability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Intervals ; Probabilistic methods ; Regression analysis ; Statistical analysis</subject><ispartof>arXiv.org, 2016-07</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mohammad Ghasemi Hamed</creatorcontrib><creatorcontrib>Masoud Ebadi Kivaj</creatorcontrib><title>Reliable Prediction Intervals for Local Linear Regression</title><title>arXiv.org</title><description>This paper introduces two methods for estimating reliable prediction intervals for local linear least-squares regressions, named Bounded Oscillation Prediction Intervals (BOPI). It also proposes a new measure for comparing interval prediction models named Equivalent Gaussian Standard Deviation (EGSD). The experimental results compare BOPI to other methods using coverage probability, Mean Interval Size and the introduced EGSD measure. The results were generally in favor of the BOPI on considered benchmark regression datasets. It also, reports simulation studies validating the BOPI method's reliability.</description><subject>Computer simulation</subject><subject>Intervals</subject><subject>Probabilistic methods</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLsTE_mQWRaGDFPcS662khERvUp_fDD6A0xnOt2CZkHJXNHshViwPYeKci6oWZSkzpjq0Rt8twpXwYYZovIOLi0gfbQOMnqD1g7bQGoeaoMMnYQhJbdhyTATzX9dsezreDufiRf49Y4j95GdyafWCN5wrVVdK_qe-fT02eQ</recordid><startdate>20160712</startdate><enddate>20160712</enddate><creator>Mohammad Ghasemi Hamed</creator><creator>Masoud Ebadi Kivaj</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160712</creationdate><title>Reliable Prediction Intervals for Local Linear Regression</title><author>Mohammad Ghasemi Hamed ; Masoud Ebadi Kivaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20800997693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Intervals</topic><topic>Probabilistic methods</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammad Ghasemi Hamed</creatorcontrib><creatorcontrib>Masoud Ebadi Kivaj</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammad Ghasemi Hamed</au><au>Masoud Ebadi Kivaj</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reliable Prediction Intervals for Local Linear Regression</atitle><jtitle>arXiv.org</jtitle><date>2016-07-12</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>This paper introduces two methods for estimating reliable prediction intervals for local linear least-squares regressions, named Bounded Oscillation Prediction Intervals (BOPI). It also proposes a new measure for comparing interval prediction models named Equivalent Gaussian Standard Deviation (EGSD). The experimental results compare BOPI to other methods using coverage probability, Mean Interval Size and the introduced EGSD measure. The results were generally in favor of the BOPI on considered benchmark regression datasets. It also, reports simulation studies validating the BOPI method's reliability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080099769 |
source | Free E- Journals |
subjects | Computer simulation Intervals Probabilistic methods Regression analysis Statistical analysis |
title | Reliable Prediction Intervals for Local Linear Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A12%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reliable%20Prediction%20Intervals%20for%20Local%20Linear%20Regression&rft.jtitle=arXiv.org&rft.au=Mohammad%20Ghasemi%20Hamed&rft.date=2016-07-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080099769%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080099769&rft_id=info:pmid/&rfr_iscdi=true |