Onsager-corrected deep learning for sparse linear inverse problems
Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear mea...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Borgerding, Mark Schniter, Philip |
description | Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear measurements. In this paper, we propose a novel neural-network architecture that decouples prediction errors across layers in the same way that the approximate message passing (AMP) algorithm decouples them across iterations: through Onsager correction. Numerical experiments suggest that our "learned AMP" network significantly improves upon Gregor and LeCun's "learned ISTA" network in both accuracy and complexity. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079945508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079945508</sourcerecordid><originalsourceid>FETCH-proquest_journals_20799455083</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_EHBdiEnTx1ZR3LlxX2I7LS0xiTOt328EP8DV4Z57ViyRSh2yKpdyw1KiSQghi1JqrRJ2vDkyA2DWekRoZ-h4BxC4BYNudAPvPXIKBgm4HV20fHRv-M6A_mHhSTu27o0lSH_csv3lfD9dsxi8FqC5mfyCLl6NFGVd51qLSv1XfQD2tTpe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079945508</pqid></control><display><type>article</type><title>Onsager-corrected deep learning for sparse linear inverse problems</title><source>Free E- Journals</source><creator>Borgerding, Mark ; Schniter, Philip</creator><creatorcontrib>Borgerding, Mark ; Schniter, Philip</creatorcontrib><description>Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear measurements. In this paper, we propose a novel neural-network architecture that decouples prediction errors across layers in the same way that the approximate message passing (AMP) algorithm decouples them across iterations: through Onsager correction. Numerical experiments suggest that our "learned AMP" network significantly improves upon Gregor and LeCun's "learned ISTA" network in both accuracy and complexity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Deep learning ; Inverse problems ; Message passing ; Neural networks</subject><ispartof>arXiv.org, 2016-07</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Borgerding, Mark</creatorcontrib><creatorcontrib>Schniter, Philip</creatorcontrib><title>Onsager-corrected deep learning for sparse linear inverse problems</title><title>arXiv.org</title><description>Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear measurements. In this paper, we propose a novel neural-network architecture that decouples prediction errors across layers in the same way that the approximate message passing (AMP) algorithm decouples them across iterations: through Onsager correction. Numerical experiments suggest that our "learned AMP" network significantly improves upon Gregor and LeCun's "learned ISTA" network in both accuracy and complexity.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Inverse problems</subject><subject>Message passing</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAQRYMgWLT_EHBdiEnTx1ZR3LlxX2I7LS0xiTOt328EP8DV4Z57ViyRSh2yKpdyw1KiSQghi1JqrRJ2vDkyA2DWekRoZ-h4BxC4BYNudAPvPXIKBgm4HV20fHRv-M6A_mHhSTu27o0lSH_csv3lfD9dsxi8FqC5mfyCLl6NFGVd51qLSv1XfQD2tTpe</recordid><startdate>20160720</startdate><enddate>20160720</enddate><creator>Borgerding, Mark</creator><creator>Schniter, Philip</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160720</creationdate><title>Onsager-corrected deep learning for sparse linear inverse problems</title><author>Borgerding, Mark ; Schniter, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20799455083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Inverse problems</topic><topic>Message passing</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Borgerding, Mark</creatorcontrib><creatorcontrib>Schniter, Philip</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgerding, Mark</au><au>Schniter, Philip</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Onsager-corrected deep learning for sparse linear inverse problems</atitle><jtitle>arXiv.org</jtitle><date>2016-07-20</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear measurements. In this paper, we propose a novel neural-network architecture that decouples prediction errors across layers in the same way that the approximate message passing (AMP) algorithm decouples them across iterations: through Onsager correction. Numerical experiments suggest that our "learned AMP" network significantly improves upon Gregor and LeCun's "learned ISTA" network in both accuracy and complexity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079945508 |
source | Free E- Journals |
subjects | Algorithms Deep learning Inverse problems Message passing Neural networks |
title | Onsager-corrected deep learning for sparse linear inverse problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Onsager-corrected%20deep%20learning%20for%20sparse%20linear%20inverse%20problems&rft.jtitle=arXiv.org&rft.au=Borgerding,%20Mark&rft.date=2016-07-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079945508%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079945508&rft_id=info:pmid/&rfr_iscdi=true |