Onsager-corrected deep learning for sparse linear inverse problems

Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-07
Hauptverfasser: Borgerding, Mark, Schniter, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Borgerding, Mark
Schniter, Philip
description Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear measurements. In this paper, we propose a novel neural-network architecture that decouples prediction errors across layers in the same way that the approximate message passing (AMP) algorithm decouples them across iterations: through Onsager correction. Numerical experiments suggest that our "learned AMP" network significantly improves upon Gregor and LeCun's "learned ISTA" network in both accuracy and complexity.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079945508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079945508</sourcerecordid><originalsourceid>FETCH-proquest_journals_20799455083</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_EHBdiEnTx1ZR3LlxX2I7LS0xiTOt328EP8DV4Z57ViyRSh2yKpdyw1KiSQghi1JqrRJ2vDkyA2DWekRoZ-h4BxC4BYNudAPvPXIKBgm4HV20fHRv-M6A_mHhSTu27o0lSH_csv3lfD9dsxi8FqC5mfyCLl6NFGVd51qLSv1XfQD2tTpe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079945508</pqid></control><display><type>article</type><title>Onsager-corrected deep learning for sparse linear inverse problems</title><source>Free E- Journals</source><creator>Borgerding, Mark ; Schniter, Philip</creator><creatorcontrib>Borgerding, Mark ; Schniter, Philip</creatorcontrib><description>Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear measurements. In this paper, we propose a novel neural-network architecture that decouples prediction errors across layers in the same way that the approximate message passing (AMP) algorithm decouples them across iterations: through Onsager correction. Numerical experiments suggest that our "learned AMP" network significantly improves upon Gregor and LeCun's "learned ISTA" network in both accuracy and complexity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Deep learning ; Inverse problems ; Message passing ; Neural networks</subject><ispartof>arXiv.org, 2016-07</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Borgerding, Mark</creatorcontrib><creatorcontrib>Schniter, Philip</creatorcontrib><title>Onsager-corrected deep learning for sparse linear inverse problems</title><title>arXiv.org</title><description>Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear measurements. In this paper, we propose a novel neural-network architecture that decouples prediction errors across layers in the same way that the approximate message passing (AMP) algorithm decouples them across iterations: through Onsager correction. Numerical experiments suggest that our "learned AMP" network significantly improves upon Gregor and LeCun's "learned ISTA" network in both accuracy and complexity.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Inverse problems</subject><subject>Message passing</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAQRYMgWLT_EHBdiEnTx1ZR3LlxX2I7LS0xiTOt328EP8DV4Z57ViyRSh2yKpdyw1KiSQghi1JqrRJ2vDkyA2DWekRoZ-h4BxC4BYNudAPvPXIKBgm4HV20fHRv-M6A_mHhSTu27o0lSH_csv3lfD9dsxi8FqC5mfyCLl6NFGVd51qLSv1XfQD2tTpe</recordid><startdate>20160720</startdate><enddate>20160720</enddate><creator>Borgerding, Mark</creator><creator>Schniter, Philip</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160720</creationdate><title>Onsager-corrected deep learning for sparse linear inverse problems</title><author>Borgerding, Mark ; Schniter, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20799455083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Inverse problems</topic><topic>Message passing</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Borgerding, Mark</creatorcontrib><creatorcontrib>Schniter, Philip</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgerding, Mark</au><au>Schniter, Philip</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Onsager-corrected deep learning for sparse linear inverse problems</atitle><jtitle>arXiv.org</jtitle><date>2016-07-20</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear measurements. In this paper, we propose a novel neural-network architecture that decouples prediction errors across layers in the same way that the approximate message passing (AMP) algorithm decouples them across iterations: through Onsager correction. Numerical experiments suggest that our "learned AMP" network significantly improves upon Gregor and LeCun's "learned ISTA" network in both accuracy and complexity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2079945508
source Free E- Journals
subjects Algorithms
Deep learning
Inverse problems
Message passing
Neural networks
title Onsager-corrected deep learning for sparse linear inverse problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Onsager-corrected%20deep%20learning%20for%20sparse%20linear%20inverse%20problems&rft.jtitle=arXiv.org&rft.au=Borgerding,%20Mark&rft.date=2016-07-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079945508%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079945508&rft_id=info:pmid/&rfr_iscdi=true