Ocean warming alleviates iron limitation of marine nitrogen fixation
The cyanobacterium Trichodesmium fixes as much as half of the nitrogen (N 2 ) that supports tropical open-ocean biomes, but its growth is frequently limited by iron (Fe) availability 1 , 2 . How future ocean warming may interact with this globally widespread Fe limitation of Trichodesmium N 2 fixati...
Gespeichert in:
Veröffentlicht in: | Nature climate change 2018-08, Vol.8 (8), p.709-712 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 712 |
---|---|
container_issue | 8 |
container_start_page | 709 |
container_title | Nature climate change |
container_volume | 8 |
creator | Jiang, Hai-Bo Fu, Fei-Xue Rivero-Calle, Sara Levine, Naomi M. Sañudo-Wilhelmy, Sergio A. Qu, Ping-Ping Wang, Xin-Wei Pinedo-Gonzalez, Paulina Zhu, Zhu Hutchins, David A. |
description | The cyanobacterium
Trichodesmium
fixes as much as half of the nitrogen (N
2
) that supports tropical open-ocean biomes, but its growth is frequently limited by iron (Fe) availability
1
,
2
. How future ocean warming may interact with this globally widespread Fe limitation of
Trichodesmium
N
2
fixation is unclear
3
. Here, we show that the optimum growth temperature of Fe-limited
Trichodesmium
is ~5 °C higher than for Fe-replete cells, which results in large increases in growth and N
2
fixation under the projected warmer Fe-deplete sea surface conditions. Concurrently, the cellular Fe content decreases as temperature rises. Together, these two trends result in thermally driven increases of ~470% in Fe-limited cellular iron use efficiencies (IUEs), defined as the molar quantity of N
2
fixed by
Trichodesmium
per unit time per mole of cellular Fe (mol N
2
fixed h
–1
mol Fe
–1
), which enables
Trichodesmium
to much more efficiently leverage the scarce available Fe supplies to support N
2
fixation. Modelling these results in the context of the IPCC representative concentration pathway (RCP) 8.5 global warming scenario
4
predicts that IUEs of N
2
fixers could increase by ~76% by 2100, and largely alleviate the prevailing Fe limitation across broad expanses of the tropical Pacific and Indian Oceans. Thermally enhanced cyanobacterial IUEs could increase future global marine N
2
fixation by ~22% over the next century, and thus profoundly alter the biology and biogeochemistry of open-ocean ecosystems.
The growth of nitrogen-fixing marine cyanobacteria
Trichodesmium
is limited by iron availability under current conditions. However warmer temperatures reduce the iron requirement, allowing greater growth rates and increased nitrogen fixation. |
doi_str_mv | 10.1038/s41558-018-0216-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2079933467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079933467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-d34794c5d8bd4f716c96441b783cbbf9351012432e303c25f3f92a1fac8602cf3</originalsourceid><addsrcrecordid>eNp1UNtKAzEQDaJgqf0A3wI-r-a2uTxKvUKhLwq-hWw2WVK22Zpsvfy9qSv65MAww8w5Z4YDwDlGlxhReZUZrmtZIVySYF7JIzDDoky4UPL4t5cvp2CR8waVEJhTrmbgZm2difDdpG2IHTR9796CGV2GIQ0R9mEbRjOG0g4ebk0K0cEYxjR0LkIfPr53Z-DEmz67xU-dg-e726flQ7Va3z8ur1eVpZKMVUuZUMzWrWxa5ssHVnHGcCMktU3jFa0xwoRR4iiiltSeekUM9sZKjoj1dA4uJt1dGl73Lo96M-xTLCc1QUIpShkXBYUnlE1Dzsl5vUuhvP6pMdIHv_Tkly5-6YNfWhYOmTi5YGPn0p_y_6QvS1RtAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079933467</pqid></control><display><type>article</type><title>Ocean warming alleviates iron limitation of marine nitrogen fixation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jiang, Hai-Bo ; Fu, Fei-Xue ; Rivero-Calle, Sara ; Levine, Naomi M. ; Sañudo-Wilhelmy, Sergio A. ; Qu, Ping-Ping ; Wang, Xin-Wei ; Pinedo-Gonzalez, Paulina ; Zhu, Zhu ; Hutchins, David A.</creator><creatorcontrib>Jiang, Hai-Bo ; Fu, Fei-Xue ; Rivero-Calle, Sara ; Levine, Naomi M. ; Sañudo-Wilhelmy, Sergio A. ; Qu, Ping-Ping ; Wang, Xin-Wei ; Pinedo-Gonzalez, Paulina ; Zhu, Zhu ; Hutchins, David A.</creatorcontrib><description>The cyanobacterium
Trichodesmium
fixes as much as half of the nitrogen (N
2
) that supports tropical open-ocean biomes, but its growth is frequently limited by iron (Fe) availability
1
,
2
. How future ocean warming may interact with this globally widespread Fe limitation of
Trichodesmium
N
2
fixation is unclear
3
. Here, we show that the optimum growth temperature of Fe-limited
Trichodesmium
is ~5 °C higher than for Fe-replete cells, which results in large increases in growth and N
2
fixation under the projected warmer Fe-deplete sea surface conditions. Concurrently, the cellular Fe content decreases as temperature rises. Together, these two trends result in thermally driven increases of ~470% in Fe-limited cellular iron use efficiencies (IUEs), defined as the molar quantity of N
2
fixed by
Trichodesmium
per unit time per mole of cellular Fe (mol N
2
fixed h
–1
mol Fe
–1
), which enables
Trichodesmium
to much more efficiently leverage the scarce available Fe supplies to support N
2
fixation. Modelling these results in the context of the IPCC representative concentration pathway (RCP) 8.5 global warming scenario
4
predicts that IUEs of N
2
fixers could increase by ~76% by 2100, and largely alleviate the prevailing Fe limitation across broad expanses of the tropical Pacific and Indian Oceans. Thermally enhanced cyanobacterial IUEs could increase future global marine N
2
fixation by ~22% over the next century, and thus profoundly alter the biology and biogeochemistry of open-ocean ecosystems.
The growth of nitrogen-fixing marine cyanobacteria
Trichodesmium
is limited by iron availability under current conditions. However warmer temperatures reduce the iron requirement, allowing greater growth rates and increased nitrogen fixation.</description><identifier>ISSN: 1758-678X</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-018-0216-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2165 ; 631/158/2446/2447 ; 704/47 ; 704/829/826 ; Biogeochemistry ; Biology ; Climate Change ; Climate Change/Climate Change Impacts ; Earth and Environmental Science ; Ecosystems ; Environment ; Environmental Law/Policy/Ecojustice ; Global warming ; Growth ; Intergovernmental Panel on Climate Change ; Iron ; Iron content ; Letter ; Marine ecosystems ; Modelling ; Nitrogen ; Nitrogen fixation ; Nitrogenation ; Ocean temperature ; Ocean warming ; Oceans ; Plankton ; Sea surface ; Temperature ; Trends ; Trichodesmium ; Tropical climate</subject><ispartof>Nature climate change, 2018-08, Vol.8 (8), p.709-712</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-d34794c5d8bd4f716c96441b783cbbf9351012432e303c25f3f92a1fac8602cf3</citedby><cites>FETCH-LOGICAL-c382t-d34794c5d8bd4f716c96441b783cbbf9351012432e303c25f3f92a1fac8602cf3</cites><orcidid>0000-0002-6637-756X ; 0000-0002-4963-0535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41558-018-0216-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41558-018-0216-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jiang, Hai-Bo</creatorcontrib><creatorcontrib>Fu, Fei-Xue</creatorcontrib><creatorcontrib>Rivero-Calle, Sara</creatorcontrib><creatorcontrib>Levine, Naomi M.</creatorcontrib><creatorcontrib>Sañudo-Wilhelmy, Sergio A.</creatorcontrib><creatorcontrib>Qu, Ping-Ping</creatorcontrib><creatorcontrib>Wang, Xin-Wei</creatorcontrib><creatorcontrib>Pinedo-Gonzalez, Paulina</creatorcontrib><creatorcontrib>Zhu, Zhu</creatorcontrib><creatorcontrib>Hutchins, David A.</creatorcontrib><title>Ocean warming alleviates iron limitation of marine nitrogen fixation</title><title>Nature climate change</title><addtitle>Nature Clim Change</addtitle><description>The cyanobacterium
Trichodesmium
fixes as much as half of the nitrogen (N
2
) that supports tropical open-ocean biomes, but its growth is frequently limited by iron (Fe) availability
1
,
2
. How future ocean warming may interact with this globally widespread Fe limitation of
Trichodesmium
N
2
fixation is unclear
3
. Here, we show that the optimum growth temperature of Fe-limited
Trichodesmium
is ~5 °C higher than for Fe-replete cells, which results in large increases in growth and N
2
fixation under the projected warmer Fe-deplete sea surface conditions. Concurrently, the cellular Fe content decreases as temperature rises. Together, these two trends result in thermally driven increases of ~470% in Fe-limited cellular iron use efficiencies (IUEs), defined as the molar quantity of N
2
fixed by
Trichodesmium
per unit time per mole of cellular Fe (mol N
2
fixed h
–1
mol Fe
–1
), which enables
Trichodesmium
to much more efficiently leverage the scarce available Fe supplies to support N
2
fixation. Modelling these results in the context of the IPCC representative concentration pathway (RCP) 8.5 global warming scenario
4
predicts that IUEs of N
2
fixers could increase by ~76% by 2100, and largely alleviate the prevailing Fe limitation across broad expanses of the tropical Pacific and Indian Oceans. Thermally enhanced cyanobacterial IUEs could increase future global marine N
2
fixation by ~22% over the next century, and thus profoundly alter the biology and biogeochemistry of open-ocean ecosystems.
The growth of nitrogen-fixing marine cyanobacteria
Trichodesmium
is limited by iron availability under current conditions. However warmer temperatures reduce the iron requirement, allowing greater growth rates and increased nitrogen fixation.</description><subject>631/158/2165</subject><subject>631/158/2446/2447</subject><subject>704/47</subject><subject>704/829/826</subject><subject>Biogeochemistry</subject><subject>Biology</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Earth and Environmental Science</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Global warming</subject><subject>Growth</subject><subject>Intergovernmental Panel on Climate Change</subject><subject>Iron</subject><subject>Iron content</subject><subject>Letter</subject><subject>Marine ecosystems</subject><subject>Modelling</subject><subject>Nitrogen</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>Ocean temperature</subject><subject>Ocean warming</subject><subject>Oceans</subject><subject>Plankton</subject><subject>Sea surface</subject><subject>Temperature</subject><subject>Trends</subject><subject>Trichodesmium</subject><subject>Tropical climate</subject><issn>1758-678X</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UNtKAzEQDaJgqf0A3wI-r-a2uTxKvUKhLwq-hWw2WVK22Zpsvfy9qSv65MAww8w5Z4YDwDlGlxhReZUZrmtZIVySYF7JIzDDoky4UPL4t5cvp2CR8waVEJhTrmbgZm2difDdpG2IHTR9796CGV2GIQ0R9mEbRjOG0g4ebk0K0cEYxjR0LkIfPr53Z-DEmz67xU-dg-e726flQ7Va3z8ur1eVpZKMVUuZUMzWrWxa5ssHVnHGcCMktU3jFa0xwoRR4iiiltSeekUM9sZKjoj1dA4uJt1dGl73Lo96M-xTLCc1QUIpShkXBYUnlE1Dzsl5vUuhvP6pMdIHv_Tkly5-6YNfWhYOmTi5YGPn0p_y_6QvS1RtAA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Jiang, Hai-Bo</creator><creator>Fu, Fei-Xue</creator><creator>Rivero-Calle, Sara</creator><creator>Levine, Naomi M.</creator><creator>Sañudo-Wilhelmy, Sergio A.</creator><creator>Qu, Ping-Ping</creator><creator>Wang, Xin-Wei</creator><creator>Pinedo-Gonzalez, Paulina</creator><creator>Zhu, Zhu</creator><creator>Hutchins, David A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6637-756X</orcidid><orcidid>https://orcid.org/0000-0002-4963-0535</orcidid></search><sort><creationdate>20180801</creationdate><title>Ocean warming alleviates iron limitation of marine nitrogen fixation</title><author>Jiang, Hai-Bo ; Fu, Fei-Xue ; Rivero-Calle, Sara ; Levine, Naomi M. ; Sañudo-Wilhelmy, Sergio A. ; Qu, Ping-Ping ; Wang, Xin-Wei ; Pinedo-Gonzalez, Paulina ; Zhu, Zhu ; Hutchins, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-d34794c5d8bd4f716c96441b783cbbf9351012432e303c25f3f92a1fac8602cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/158/2165</topic><topic>631/158/2446/2447</topic><topic>704/47</topic><topic>704/829/826</topic><topic>Biogeochemistry</topic><topic>Biology</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Earth and Environmental Science</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Global warming</topic><topic>Growth</topic><topic>Intergovernmental Panel on Climate Change</topic><topic>Iron</topic><topic>Iron content</topic><topic>Letter</topic><topic>Marine ecosystems</topic><topic>Modelling</topic><topic>Nitrogen</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>Ocean temperature</topic><topic>Ocean warming</topic><topic>Oceans</topic><topic>Plankton</topic><topic>Sea surface</topic><topic>Temperature</topic><topic>Trends</topic><topic>Trichodesmium</topic><topic>Tropical climate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Hai-Bo</creatorcontrib><creatorcontrib>Fu, Fei-Xue</creatorcontrib><creatorcontrib>Rivero-Calle, Sara</creatorcontrib><creatorcontrib>Levine, Naomi M.</creatorcontrib><creatorcontrib>Sañudo-Wilhelmy, Sergio A.</creatorcontrib><creatorcontrib>Qu, Ping-Ping</creatorcontrib><creatorcontrib>Wang, Xin-Wei</creatorcontrib><creatorcontrib>Pinedo-Gonzalez, Paulina</creatorcontrib><creatorcontrib>Zhu, Zhu</creatorcontrib><creatorcontrib>Hutchins, David A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Hai-Bo</au><au>Fu, Fei-Xue</au><au>Rivero-Calle, Sara</au><au>Levine, Naomi M.</au><au>Sañudo-Wilhelmy, Sergio A.</au><au>Qu, Ping-Ping</au><au>Wang, Xin-Wei</au><au>Pinedo-Gonzalez, Paulina</au><au>Zhu, Zhu</au><au>Hutchins, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocean warming alleviates iron limitation of marine nitrogen fixation</atitle><jtitle>Nature climate change</jtitle><stitle>Nature Clim Change</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>8</volume><issue>8</issue><spage>709</spage><epage>712</epage><pages>709-712</pages><issn>1758-678X</issn><eissn>1758-6798</eissn><abstract>The cyanobacterium
Trichodesmium
fixes as much as half of the nitrogen (N
2
) that supports tropical open-ocean biomes, but its growth is frequently limited by iron (Fe) availability
1
,
2
. How future ocean warming may interact with this globally widespread Fe limitation of
Trichodesmium
N
2
fixation is unclear
3
. Here, we show that the optimum growth temperature of Fe-limited
Trichodesmium
is ~5 °C higher than for Fe-replete cells, which results in large increases in growth and N
2
fixation under the projected warmer Fe-deplete sea surface conditions. Concurrently, the cellular Fe content decreases as temperature rises. Together, these two trends result in thermally driven increases of ~470% in Fe-limited cellular iron use efficiencies (IUEs), defined as the molar quantity of N
2
fixed by
Trichodesmium
per unit time per mole of cellular Fe (mol N
2
fixed h
–1
mol Fe
–1
), which enables
Trichodesmium
to much more efficiently leverage the scarce available Fe supplies to support N
2
fixation. Modelling these results in the context of the IPCC representative concentration pathway (RCP) 8.5 global warming scenario
4
predicts that IUEs of N
2
fixers could increase by ~76% by 2100, and largely alleviate the prevailing Fe limitation across broad expanses of the tropical Pacific and Indian Oceans. Thermally enhanced cyanobacterial IUEs could increase future global marine N
2
fixation by ~22% over the next century, and thus profoundly alter the biology and biogeochemistry of open-ocean ecosystems.
The growth of nitrogen-fixing marine cyanobacteria
Trichodesmium
is limited by iron availability under current conditions. However warmer temperatures reduce the iron requirement, allowing greater growth rates and increased nitrogen fixation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41558-018-0216-8</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6637-756X</orcidid><orcidid>https://orcid.org/0000-0002-4963-0535</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-678X |
ispartof | Nature climate change, 2018-08, Vol.8 (8), p.709-712 |
issn | 1758-678X 1758-6798 |
language | eng |
recordid | cdi_proquest_journals_2079933467 |
source | SpringerLink Journals - AutoHoldings |
subjects | 631/158/2165 631/158/2446/2447 704/47 704/829/826 Biogeochemistry Biology Climate Change Climate Change/Climate Change Impacts Earth and Environmental Science Ecosystems Environment Environmental Law/Policy/Ecojustice Global warming Growth Intergovernmental Panel on Climate Change Iron Iron content Letter Marine ecosystems Modelling Nitrogen Nitrogen fixation Nitrogenation Ocean temperature Ocean warming Oceans Plankton Sea surface Temperature Trends Trichodesmium Tropical climate |
title | Ocean warming alleviates iron limitation of marine nitrogen fixation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocean%20warming%20alleviates%20iron%20limitation%20of%20marine%20nitrogen%20fixation&rft.jtitle=Nature%20climate%20change&rft.au=Jiang,%20Hai-Bo&rft.date=2018-08-01&rft.volume=8&rft.issue=8&rft.spage=709&rft.epage=712&rft.pages=709-712&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-018-0216-8&rft_dat=%3Cproquest_cross%3E2079933467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079933467&rft_id=info:pmid/&rfr_iscdi=true |